Search results
Results from the WOW.Com Content Network
Newton's corpuscular theory was an elaboration of his view of reality as interactions of material points through forces. Note Albert Einstein's description of Newton's conception of physical reality: [Newton's] physical reality is characterised by concepts of space, time, the material point and force (interaction between material points).
Corpuscularianism remained a dominant theory for centuries and was blended with alchemy by early scientists such as Robert Boyle and Isaac Newton in the 17th century. In his work The Sceptical Chymist (1661), Boyle abandoned the Aristotelian ideas of the classical elements —earth, water, air, and fire—in favor of corpuscularianism.
The early presentation of the work to the Royal Society stimulated a bitter dispute between Newton and Robert Hooke over the "corpuscular" or particle theory of light, which prompted Newton to postpone publication of the work until after Hooke's death in 1703.
The early-to-mid 1800s were a period of intense debate on the particle-versus-wave nature of light. Although the observation of the Arago spot in 1819 may have seemed to settle the matter definitively in favor of Fresnel's wave theory of light, various concerns continued to appear to be addressed more satisfactorily by Newton's corpuscular ...
Newton's corpuscular theory of light was gradually succeeded by the wave theory. It was not until the 19th century that the quantitative measurement of dispersed light was recognized and standardized. As with many subsequent spectroscopy experiments, Newton's sources of white light included flames and stars, including the Sun.
Bradley explained this effect in the context of Newton's corpuscular theory of light, by showing that the aberration angle was given by simple vector addition of the Earth's orbital velocity and the velocity of the corpuscles of light, just as vertically falling raindrops strike a moving object at an angle.
Newton's corpuscular theory implied that light would travel faster in a denser medium, while the wave theory of Huygens and others implied the opposite. At that time, the speed of light could not be measured accurately enough to decide which theory was correct. The first to make a sufficiently accurate measurement was Léon Foucault, in 1850. [38]
From a book published in 1807 relating lectures given by Young in 1802 to London's Royal Institution. While studying medicine at Göttingen in the 1790s, Young wrote a thesis on the physical and mathematical properties of sound [4] and in 1800, he presented a paper to the Royal Society (written in 1799) where he argued that light was also a wave motion.