Search results
Results from the WOW.Com Content Network
Newton's corpuscular theory was an elaboration of his view of reality as interactions of material points through forces. Note Albert Einstein's description of Newton's conception of physical reality: [Newton's] physical reality is characterised by concepts of space, time, the material point and force (interaction between material points).
The early presentation of the work to the Royal Society stimulated a bitter dispute between Newton and Robert Hooke over the "corpuscular" or particle theory of light, which prompted Newton to postpone publication of the work until after Hooke's death in 1703.
Corpuscularianism remained a dominant theory for centuries and was blended with alchemy by early scientists such as Robert Boyle and Isaac Newton in the 17th century. In his work The Sceptical Chymist (1661), Boyle abandoned the Aristotelian ideas of the classical elements —earth, water, air, and fire—in favor of corpuscularianism.
In the late 1660s and early 1670s, Isaac Newton expanded Descartes's ideas into a corpuscle theory of light, famously determining that white light was a mix of colours that can be separated into its component parts with a prism. In 1690, Christiaan Huygens proposed a wave theory for light based on suggestions that had been made by Robert Hooke ...
Newton's corpuscular theory implied that light would travel faster in a denser medium, while the wave theory of Huygens and others implied the opposite. At that time, the speed of light could not be measured accurately enough to decide which theory was correct. The first to make a sufficiently accurate measurement was Léon Foucault, in 1850. [38]
Newton noted that regardless of whether it was reflected or scattered or transmitted, it stayed the same colour. Thus, he observed that colour is the result of objects interacting with already-coloured light rather than objects generating the colour themselves. This is known as Newton's theory of colour.
Newton, and most of his contemporaries, with the notable exception of Huygens, worked on the assumption that classical mechanics would be able to explain all phenomena, including light, in the form of geometric optics. Even when discovering the so-called Newton's rings (a wave interference phenomenon) he maintained his own corpuscular theory of ...
The corpuscular theory of light, developed by Isaac Newton in his Opticks, which proposed the existence of light particles which are now known as photons; A term used by J. J. Thomson to describe particles now known to be electrons, in his plum pudding model; A small free-floating biological cell, especially a blood cell