Search results
Results from the WOW.Com Content Network
Physics - Newton's corpuscular theory of light - Science. elearnin. Uploaded 5 Jan 2013. Robert Hooke's Critique of Newton's Theory of Light and Colors (delivered 1672) Robert Hooke. Thomas Birch, The History of the Royal Society, vol. 3 (London: 1757), pp. 10–15. Newton Project, University of Sussex. Corpuscule or Wave. Arman Kashef. 2022.
The early presentation of the work to the Royal Society stimulated a bitter dispute between Newton and Robert Hooke over the "corpuscular" or particle theory of light, which prompted Newton to postpone publication of the work until after Hooke's death in 1703.
Corpuscularianism remained a dominant theory for centuries and was blended with alchemy by early scientists such as Robert Boyle and Isaac Newton in the 17th century. In his work The Sceptical Chymist (1661), Boyle abandoned the Aristotelian ideas of the classical elements —earth, water, air, and fire—in favor of corpuscularianism.
In the late 17th century, Sir Isaac Newton had advocated that light was corpuscular (particulate), but Christiaan Huygens took an opposing wave description. While Newton had favored a particle approach, he was the first to attempt to reconcile both wave and particle theories of light, and the only one in his time to consider both, thereby anticipating modern wave-particle duality.
Newton's corpuscular theory implied that light would travel faster in a denser medium, while the wave theory of Huygens and others implied the opposite. At that time, the speed of light could not be measured accurately enough to decide which theory was correct. The first to make a sufficiently accurate measurement was Léon Foucault, in 1850. [38]
The corpuscular theory of light, developed by Isaac Newton in his Opticks, which proposed the existence of light particles which are now known as photons; A term used by J. J. Thomson to describe particles now known to be electrons, in his plum pudding model; A small free-floating biological cell, especially a blood cell
Newton, and most of his contemporaries, with the notable exception of Huygens, worked on the assumption that classical mechanics would be able to explain all phenomena, including light, in the form of geometric optics. Even when discovering the so-called Newton's rings (a wave interference phenomenon) he maintained his own corpuscular theory of ...
Newton's corpuscular theory of light was gradually succeeded by the wave theory. It was not until the 19th century that the quantitative measurement of dispersed light was recognized and standardized. As with many subsequent spectroscopy experiments, Newton's sources of white light included flames and stars, including the Sun.