Search results
Results from the WOW.Com Content Network
In mathematics, Riemann's differential equation, named after Bernhard Riemann, is a generalization of the hypergeometric differential equation, allowing the regular singular points to occur anywhere on the Riemann sphere, rather than merely at 0, 1, and . The equation is also known as the Papperitz equation. [1]
Defining the two Wirtinger derivatives as = (), ¯ = (+), the Cauchy–Riemann equations can then be written as a single equation ¯ =, and the complex derivative of in that case is =. In this form, the Cauchy–Riemann equations can be interpreted as the statement that a complex function f {\textstyle f} of a complex variable z {\textstyle z ...
Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...
Riemannian manifolds are named after German mathematician Bernhard Riemann, who first conceptualized them. Formally, a Riemannian metric (or just a metric) on a smooth manifold is a choice of inner product for each tangent space of the manifold. A Riemannian manifold is a smooth manifold together with a Riemannian metric.
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.
(Second structural equation) where h 1 and h 2 are smooth functions on the frame bundle F and K is a smooth function on M. In the case of a Riemannian 2-manifold, the fundamental theorem of Riemannian geometry can be rephrased in terms of Cartan's canonical 1-forms: Theorem.
In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor (after Bernhard Riemann and Elwin Bruno Christoffel) is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold (i.e., it is a tensor field).
Several stages of Ricci flow on a 2D manifold. In the mathematical fields of differential geometry and geometric analysis, the Ricci flow (/ ˈ r iː tʃ i / REE-chee, Italian:), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric.