Search results
Results from the WOW.Com Content Network
The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies ...
The area arose owing to the emergence of many modern data sets in which the dimension of the data vectors may be comparable to, or even larger than, the sample size, so that justification for the use of traditional techniques, often based on asymptotic arguments with the dimension held fixed as the sample size increased, was lacking. [1] [2]
In many disciplines, two-dimensional data sets are also called panel data. [1] While, strictly speaking, two- and higher-dimensional data sets are "multi-dimensional", the term "multidimensional" tends to be applied only to data sets with three or more dimensions. [2]
These data can be used to improve accuracy in sample design. One option is to use the auxiliary variable as a basis for stratification, as discussed above. Another option is probability proportional to size ('PPS') sampling, in which the selection probability for each element is set to be proportional to its size measure, up to a maximum of 1.
The term big data has been in use since the 1990s, with some giving credit to John Mashey for popularizing the term. [22] [23] Big data usually includes data sets with sizes beyond the ability of commonly used software tools to capture, curate, manage, and process data within a tolerable elapsed time.
The data set lists values for each of the variables, such as for example height and weight of an object, for each member of the data set. Data sets can also consist of a collection of documents or files. [2] In the open data discipline, data set is the unit to measure the information released in a public open data repository. The European data ...
A research design typically outlines the theories and models underlying a project; the research question(s) of a project; a strategy for gathering data and information; and a strategy for producing answers from the data. [1] A strong research design yields valid answers to research questions while weak designs yield unreliable, imprecise or ...
5 data sets that center around robotic failure to execute common tasks. Integer valued features such as torque and other sensor measurements. 463 Text Classification 1999 [206] L. Seabra et al. Pittsburgh Bridges Dataset Design description is given in terms of several properties of various bridges. Various bridge features are given. 108 Text