enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Human echolocation - Wikipedia

    en.wikipedia.org/wiki/Human_echolocation

    Human echolocation is the ability of humans to detect objects in their environment by sensing echoes from those objects, by actively creating sounds: for example, by tapping their canes, lightly stomping their foot, snapping their fingers, or making clicking noises with their mouths.

  3. Animal echolocation - Wikipedia

    en.wikipedia.org/wiki/Animal_echolocation

    The term echolocation was coined by 1944 by the American zoologist Donald Griffin, who, with Robert Galambos, first demonstrated the phenomenon in bats. [1] [2] As Griffin described in his book, [3] the 18th century Italian scientist Lazzaro Spallanzani had, by means of a series of elaborate experiments, concluded that when bats fly at night, they rely on some sense besides vision, but he did ...

  4. Acoustic location - Wikipedia

    en.wikipedia.org/wiki/Acoustic_location

    Swedish soldiers operating an acoustic locator in 1940. Acoustic location is a method of determining the position of an object or sound source by using sound waves. Location can take place in gases (such as the atmosphere), liquids (such as water), and in solids (such as in the earth).

  5. images.huffingtonpost.com

    images.huffingtonpost.com/2012-08-30-3258_001.pdf

    Created Date: 8/30/2012 4:52:52 PM

  6. Active sensory systems - Wikipedia

    en.wikipedia.org/wiki/Active_sensory_systems

    Examples include echolocation of bats and dolphins and insect antennae. Using self-generated energy allows more control over signal intensity, direction, timing and spectral characteristics. By contrast, passive sensory systems involve activation by ambient energy (that is, energy that is preexisting in the environment, rather than generated by ...

  7. Greater false vampire bat - Wikipedia

    en.wikipedia.org/wiki/Greater_false_vampire_bat

    It also utilizes a sit-and-wait strategy, perching about two meters above the ground to wait for prey. It uses echolocation. It is capable of hunting using both vision and passively listening for its prey, and has also been observed catching prey in complete darkness without echolocation. Females segregate themselves from males after mating.

  8. Doppler shift compensation - Wikipedia

    en.wikipedia.org/wiki/Doppler_shift_compensation

    These types of echolocation pulses afford the bat the ability to classify, detect flutter (e.g. the fluttering wings of insects), and determine velocity information about the target. [5] Both CF and CF-FM bats use the Doppler shift compensation mechanism in order to maximize the efficiency of their echolocation behavior.

  9. Ultrasound avoidance - Wikipedia

    en.wikipedia.org/wiki/Ultrasound_avoidance

    Ultrasound avoidance is an escape or avoidance reflex displayed by certain animal species that are preyed upon by echolocating predators. [1] Ultrasound avoidance is known for several groups of insects that have independently evolved mechanisms for ultrasonic hearing.