Search results
Results from the WOW.Com Content Network
ATP is often called a high energy compound and its phosphoanhydride bonds are referred to as high-energy bonds. There is nothing special about the bonds themselves. They are high-energy bonds in the sense that free energy is released when they are hydrolyzed, for the reasons given above. Lipmann’s term "high-energy bond" and his symbol ~P ...
A phosphoryl group is a trivalent >P(=O)− group, consisting of a phosphorus atom (symbol P) and an oxygen atom (symbol O), where the three free valencies are on the phosphorus atom. While commonly depicted as possessing a double bond (P=O) the bonding is in fact non-classical.
Combining the names of functional groups with the names of the parent alkanes generates what is termed a systematic nomenclature for naming organic compounds. In traditional nomenclature, the first carbon atom after the carbon that attaches to the functional group is called the alpha carbon; the second, beta carbon, the third, gamma carbon, etc.
Example: 2,2,3-trimethyl- . If there are both double bonds and triple bonds, "en" (double bond) is written before "yne" (triple bond). When the main functional group is a terminal functional group (a group which can exist only at the end of a chain, like formyl and carboxyl groups), there is no need to number it.
The IUPAC name can also be dihydridophosphate(1−). [1] It can occur as a group phosphanyl-PH 2 in organic compounds or ligand called phosphanido, or dihydridophosphato(1−). A related substance has PH 2−. Phosphinidene (PH) has phosphorus in a −1 oxidation state. [2]
Since orthophosphoric acid has three −OH groups, it can esterify with one, two, or three alcohol molecules to form a mono-, di-, or triester. See the general structure image of an ortho- (or mono-) phosphate ester below on the left, where any of the R groups can be a hydrogen or an organic radical. Di- and tripoly- (or tri-) phosphate esters ...
In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid, a.k.a. phosphoric acid H 3 PO 4. The phosphate or orthophosphate ion [PO 4] 3− is derived from phosphoric acid by the removal of three protons H +.
The 5' end has a 5' carbon attached to a phosphate, and the other end, the 3' end, has a 3' carbon attached to a hydroxyl group. In chemistry, a phosphodiester bond occurs when exactly two of the hydroxyl groups (−OH) in phosphoric acid react with hydroxyl groups on other molecules to form two ester bonds.