Search results
Results from the WOW.Com Content Network
[1] [2] In physical and analytical chemistry, infrared spectroscopy (IR spectroscopy) is a technique used to identify chemical compounds based on the way infrared radiation is absorbed by the compound. The absorptions in this range do not apply only to bonds in organic molecules.
A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.
Infrared spectroscopy (IR spectroscopy or vibrational spectroscopy) is the measurement of the interaction of infrared radiation with matter by absorption, emission, or reflection. It is used to study and identify chemical substances or functional groups in solid, liquid, or gaseous forms. It can be used to characterize new materials or identify ...
1 H– 15 N HSQC polarization scheme for a protein/amino acid. 1 H– 15 N HSQC spectrum of a fragment of an isotopically labeled protein NleG3-2. Each peak in the spectrum represents a bonded N-H pair, with its two coordinates corresponding to the chemical shifts of each of the H and N atoms. [2]
Thus, in the 15N-HSQC, with a 15 N labelled protein, one signal is expected for each nitrogen atom in the back bone, with the exception of proline, which has no amide-hydrogen due to the cyclic nature of its backbone. Additional 15N-HSQC signals are contributed by each residue with a nitrogen-hydrogen bond in its side chain (W, N, Q, R, H, K).
1 H– 15 N HSQC spectrum of a fragment of the protein NleG3-2. Each peak in the spectrum represents a bonded N–H pair, with its two coordinates corresponding to the chemical shifts of each of the H and N atoms. Some of the peaks are labeled with the amino acid residue that gives that signal. [16
Deuterium (hydrogen-2, symbol 2 H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, 1 H. The deuterium nucleus ( deuteron ) contains one proton and one neutron , whereas the far more common 1 H has no neutrons.
These cause a downfield shift of approximately 2–4 ppm for H atoms on C α (an aliphatic C atom directly bonded to the substituent in question) and of less than 1–2 ppm for H atoms on C β (an aliphatic C atom bonded to C α). Carbonyl groups, olefinic fragments and aromatic rings contribute sp 2 hybridized carbon atoms to an aliphatic chain.