enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Denaturation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Denaturation_(biochemistry)

    In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]

  3. Hyperchromicity - Wikipedia

    en.wikipedia.org/wiki/Hyperchromicity

    The hyperchromic effect is the striking increase in absorbance of DNA upon denaturation. The two strands of DNA are bound together mainly by the stacking interactions, hydrogen bonds and hydrophobic effect between the complementary bases. The hydrogen bond limits the resonance of the aromatic ring so the absorbance of the sample is limited as well.

  4. Enzyme - Wikipedia

    en.wikipedia.org/wiki/Enzyme

    Enzyme denaturation is normally linked to temperatures above a species' normal level; as a result, enzymes from bacteria living in volcanic environments such as hot springs are prized by industrial users for their ability to function at high temperatures, allowing enzyme-catalysed reactions to be operated at a very high rate.

  5. Equilibrium unfolding - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_unfolding

    In the less extensive technique of equilibrium unfolding, the fractions of folded and unfolded molecules (denoted as and , respectively) are measured as the solution conditions are gradually changed from those favoring the native state to those favoring the unfolded state, e.g., by adding a denaturant such as guanidinium hydrochloride or urea.

  6. Immobilized enzyme - Wikipedia

    en.wikipedia.org/wiki/Immobilized_enzyme

    Since the enzyme in this process does not interact chemically with the polymer/ material of the support fibers/lattice, it remains protected from denaturation with time. [6] Basically, the enzyme is trapped in insoluble beads or microspheres, such as calcium alginate beads. However, these insoluble substances hinder the arrival of the substrate ...

  7. Helicase-dependent amplification - Wikipedia

    en.wikipedia.org/wiki/Helicase-dependent...

    The polymerase chain reaction is the most widely used method for in vitro DNA amplification for purposes of molecular biology and biomedical research. [1] This process involves the separation of the double-stranded DNA in high heat into single strands (the denaturation step, typically achieved at 95–97 °C), annealing of the primers to the single stranded DNA (the annealing step) and copying ...

  8. Proteolysis - Wikipedia

    en.wikipedia.org/wiki/Proteolysis

    Different enzymes have different specificity for their substrate; trypsin, for example, cleaves the peptide bond after a positively charged residue (arginine and lysine); chymotrypsin cleaves the bond after an aromatic residue (phenylalanine, tyrosine, and tryptophan); elastase cleaves the bond after a small non-polar residue such as alanine or ...

  9. Nitrogenase - Wikipedia

    en.wikipedia.org/wiki/Nitrogenase

    Nitrogenase is an enzyme responsible for catalyzing nitrogen fixation, which is the reduction of nitrogen (N 2) to ammonia (NH 3) and a process vital to sustaining life on Earth. [9] There are three types of nitrogenase found in various nitrogen-fixing bacteria: molybdenum (Mo) nitrogenase, vanadium (V) nitrogenase , and iron-only (Fe ...