enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sidereal year - Wikipedia

    en.wikipedia.org/wiki/Sidereal_year

    At present, the rate of axial precession corresponds to a period of 25,772 years, [3] so sidereal year is longer than tropical year by 1,224.5 seconds (20 min 24.5 s, ~365.24219*86400/25772). Before the discovery of the precession of the equinoxes by Hipparchus in the Hellenistic period , the difference between sidereal and tropical year was ...

  3. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy , it usually applies to planets or asteroids orbiting the Sun , moons orbiting planets, exoplanets orbiting other stars , or binary stars .

  4. Glossary of astronomy - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_astronomy

    orbital period. Also revolution period. The time a given astronomical object takes to complete one orbit around another object. For objects in the Solar System, the orbital period is often referred to as the sidereal period. orbital plane The imaginary geometric plane defined by the orbit of an astronomical body around its primary.

  5. Sun-synchronous orbit - Wikipedia

    en.wikipedia.org/wiki/Sun-synchronous_orbit

    An orbit will be Sun-synchronous when the precession rate ρ = ⁠ dΩ / dt ⁠ equals the mean motion of the Earth about the Sun n E, which is 360° per sidereal year (1.990 968 71 × 10 −7 rad/s), so we must set n E = ⁠ ΔΩ E / T E ⁠ = ρ = ⁠ ΔΩ / T ⁠, where T E is the Earth orbital period, while T is the period of the spacecraft ...

  6. Orbital elements - Wikipedia

    en.wikipedia.org/wiki/Orbital_elements

    Orbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit . There are many different ways to mathematically describe the same orbit, but certain schemes are commonly used in astronomy and orbital mechanics .

  7. Mean anomaly - Wikipedia

    en.wikipedia.org/wiki/Mean_anomaly

    If the mean anomaly is known at any given instant, it can be calculated at any later (or prior) instant by simply adding (or subtracting) n⋅δt where δt represents the small time difference. Mean anomaly does not measure an angle between any physical objects (except at pericenter or apocenter, or for a circular orbit).

  8. Mean motion - Wikipedia

    en.wikipedia.org/wiki/Mean_motion

    Kepler's 3rd law of planetary motion states, the square of the periodic time is proportional to the cube of the mean distance, [4] or , where a is the semi-major axis or mean distance, and P is the orbital period as above. The constant of proportionality is given by

  9. Mean longitude - Wikipedia

    en.wikipedia.org/wiki/Mean_longitude

    Diagram of an orbit. The plane of the orbit is in yellow, the reference plain is in gray, and the reference direction (vernal point) is the arrow in red.Also labeled are the mean anomaly (M) in pink, the true anomaly in red, the argument of periapsis (ω) and periapsis in purple, the longitude of ascending node (Ω) in green, and the inclination (i) in dark green.