Search results
Results from the WOW.Com Content Network
NASA's 2015 strategy for astrobiology aimed to solve the puzzle of the origin of life – how a fully functioning living system could emerge from non-living components – through research on the prebiotic origin of life's chemicals, both in space and on planets, as well as the functioning of early biomolecules to catalyse reactions and support inheritance.
The study of this process, known as prebiotic chemistry, has made some progress, but it is still unclear whether or not life could have formed in such a manner on Earth. The alternative hypothesis of panspermia is that the first elements of life may have formed on another planet with even more favorable conditions (or even in interstellar space ...
that this extraterrestrial life was transported to Earth. [19] The creation and distribution of organic molecules from space is now uncontroversial; it is known as pseudo-panspermia. The jump from organic materials to life originating from space, however, is hypothetical and currently untestable.
The biological use of sulfur as an alternative to carbon is purely hypothetical, especially because sulfur usually forms only linear chains rather than branched ones. (The biological use of sulfur as an electron acceptor is widespread and can be traced back 3.5 billion years on Earth, thus predating the use of molecular oxygen. [28]
Astro microbiology, or exo microbiology, is the study of microorganisms in outer space. It stems from an interdisciplinary approach, which incorporates both microbiology and astrobiology. Astrobiology's efforts are aimed at understanding the origins of life and the search for life other than on Earth.
Understanding planetary habitability is partly an extrapolation of the conditions on Earth, as this is the only planet known to support life.. Planetary habitability is the measure of a planet's or a natural satellite's potential to develop and sustain an environment hospitable to life. [1]
An interdisciplinary field that studies the origins, evolution, distribution, and future of living systems in the universe, encompassing research on organic compounds in space, abiogenesis and extreme-environment adaptation on Earth, the habitability of extrasolar planets, the possible existence of extraterrestrial life, and how humans might be ...
However, some theories suggest that life could be based on other elements in the periodic table. [101] Other elements proposed have been silicon, boron, arsenic, ammonia, methane and others. As more research has been done on life on Earth, it has been found that only carbon's organic molecules have the complexity and stability to form life.