Search results
Results from the WOW.Com Content Network
Three line segments with the same direction. In geometry, direction, also known as spatial direction or vector direction, is the common characteristic of all rays which coincide when translated to share a common endpoint; equivalently, it is the common characteristic of vectors (such as the relative position between a pair of points) which can be made equal by scaling (by some positive scalar ...
In navigation, directions on maps are usually expressed with reference to geographical or true north, the direction toward the Geographical North Pole, the rotation axis of the Earth. Depending on where the compass is located on the surface of the Earth the angle between true north and magnetic north , called magnetic declination can vary ...
AAS (angle-angle-side): If two pairs of angles of two triangles are equal in measurement, and a pair of corresponding non-included sides are equal in length, then the triangles are congruent. AAS is equivalent to an ASA condition, by the fact that if any two angles are given, so is the third angle, since their sum should be 180°.
The cosine rule may be used to give the angles A, B, and C but, to avoid ambiguities, the half angle formulae are preferred. Case 2: two sides and an included angle given (SAS). The cosine rule gives a and then we are back to Case 1. Case 3: two sides and an opposite angle given (SSA). The sine rule gives C and then we have Case 7. There are ...
Triangulation may be used to find the position of the ship when the positions of A and B are known. An observer at A measures the angle α, while the observer at B measures β. The position of any vertex of a triangle can be calculated if the position of one side, and two angles, are known.
Since angle B is supplementary to both angles C and D, either of these angle measures may be used to determine the measure of Angle B. Using the measure of either angle C or angle D, we find the measure of angle B to be 180° − (180° − x) = 180° − 180° + x = x. Therefore, both angle A and angle B have measures equal to x and are equal ...
Here α, β, γ are the direction cosines and the Cartesian coordinates of the unit vector | |, and a, b, c are the direction angles of the vector v. The direction angles a, b, c are acute or obtuse angles, i.e., 0 ≤ a ≤ π, 0 ≤ b ≤ π and 0 ≤ c ≤ π, and they denote the angles formed between v and the unit basis vectors e x, e y, e z.
where the operator denotes a dot product, ^ is the unit vector in the direction of , ‖ ‖ is the length of , and is the angle between and . [ 1 ] The term scalar component refers sometimes to scalar projection, as, in Cartesian coordinates , the components of a vector are the scalar projections in the directions of the coordinate axes .