Search results
Results from the WOW.Com Content Network
In chemistry, pH (/ p iː ˈ eɪ tʃ / pee-AYCH), also referred to as acidity or basicity, historically denotes "potential of hydrogen" (or "power of hydrogen"). [1] It is a logarithmic scale used to specify the acidity or basicity of aqueous solutions.
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
Vinegar typically has a pH of about 3. The difference of 4 corresponds to a ratio of 10 4 of the activity, that is, vinegar's hydronium ion activity is about 10 −3 mol·L −1. Semilog (log–linear) graphs use the logarithmic scale concept for visualization: one axis, typically the vertical one, is scaled logarithmically. For example, the ...
A base-10 log scale is used for the Y-axis of the bottom left graph, and the Y-axis ranges from 0.1 to 1000. The top right graph uses a log-10 scale for just the X-axis, and the bottom right graph uses a log-10 scale for both the X axis and the Y-axis. Presentation of data on a logarithmic scale can be helpful when the data:
The concentration of hydrogen ions and pH are inversely proportional; in an aqueous solution, an increased concentration of hydrogen ions yields a low pH, and subsequently, an acidic product. By definition, an acid is an ion or molecule that can donate a proton, and when introduced to a solution it will react with water molecules (H 2 O) to ...
pH is defined in terms of the activity of the hydrogen ion pH = −log 10 {H + } In the approximation of ideal behaviour, activity is replaced by concentration. pH is measured by means of a glass electrode, a mixed equilibrium constant, also known as a Brønsted constant, may result.
C A is the analytical concentration of the acid and C H is the concentration the hydrogen ion that has been added to the solution. The self-dissociation of water is ignored. A quantity in square brackets, [X], represents the concentration of the chemical substance X. It is understood that the symbol H + stands for the hydrated hydronium ion.
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).