Search results
Results from the WOW.Com Content Network
Early afterdepolarizations can result in torsades de pointes, tachycardia, and other arrhythmias. [3] EADs can be triggered by hypokalemia and drugs that prolong the QT interval, including class Ia and III antiarrhythmic agents, as well as catecholamines. [1] Afterhyperpolarizations can also occur in cortical pyramidal neurons.
Though many studies have shown various cell types directing the differentiation of M cells, new research characterizes the molecular pathways that guide M cell differentiation. More recently, through loss-of-function and rescue-phenotype studies, RANKL is shown to be a receptor activator of NF-κB ligand and play a role in differentiation of M ...
M current is a type of noninactivating potassium current first discovered in bullfrog sympathetic ganglion cells. [1] The M-channel is a voltage-gated K+ channel (Kv7/KCNQ family) that is named after the receptor it is influenced by. The M-channel is important in raising the threshold for firing an action potential.
Several types of cells support an action potential, such as plant cells, muscle cells, and the specialized cells of the heart (in which occurs the cardiac action potential). However, the main excitable cell is the neuron , which also has the simplest mechanism for the action potential.
The process of depolarization is entirely dependent upon the intrinsic electrical nature of most cells. When a cell is at rest, the cell maintains what is known as a resting potential. The resting potential generated by nearly all cells results in the interior of the cell having a negative charge compared to the exterior of the cell.
Figure 1. Whole-cell current recordings of K ir 2 inwardly-rectifying potassium channels expressed in an HEK293 cell. (This is a strongly inwardly rectifying current. Downward deflections are inward currents, upward deflections outward currents, and the x-axis is time in seconds.)
Bioenergetics is a field in biochemistry and cell biology that concerns energy flow through living systems. [1] This is an active area of biological research that includes the study of the transformation of energy in living organisms and the study of thousands of different cellular processes such as cellular respiration and the many other metabolic and enzymatic processes that lead to ...
In eukaryotes, the cell cycle consists of four main stages: G 1, during which a cell is metabolically active and continuously grows; S phase, during which DNA replication takes place; G 2, during which cell growth continues and the cell synthesizes various proteins in preparation for division; and the M phase, during which the duplicated ...