Search results
Results from the WOW.Com Content Network
Symbol used to represent in situ permeability tests in geotechnical drawings. In fluid mechanics, materials science and Earth sciences, the permeability of porous media (often, a rock or soil) is a measure of the ability for fluids (gas or liquid) to flow through the media; it is commonly symbolized as k. Fluids can more easily flow through a ...
The diagram on the right shows a testing cell for films, normally made from metals like stainless steel. The photo shows a testing cell for pipes made from glass , similar to a Liebig condenser . The testing medium (liquid or gas) is situated in the inner white pipe and the permeate is collected in the space between the pipe and the glass wall.
In fluid mechanics, fluid flow through porous media is the manner in which fluids behave when flowing through a porous medium, for example sponge or wood, or when filtering water using sand or another porous material. As commonly observed, some fluid flows through the media while some mass of the fluid is stored in the pores present in the media.
The Darcy's constitutive equation, for single phase (fluid) flow, is the defining equation for absolute permeability (single phase permeability). With reference to the diagram to the right, the flow velocity is in SI units (/), and since the porosity φ is a nondimensional number, the Darcy flux , or discharge per unit area, is also defined in ...
The coefficient of permeability varies with the void ratio as e/sup>/(1+e). For a given soil, the greater the void ratio, the higher the value of the coefficient of permeability. Here 'e' is the void ratio. Based on other concepts it has been established that the permeability of a soil varies as e 2 or e 3 /(1+e). Whatever may be the exact ...
Permeability (earth sciences), a measure of the ability of a material (such as rocks) to transmit fluids Relative permeability, in multiphase flow in porous media; Permeability (foundry sand), a test of the venting characteristics of a rammed foundry sand; Hydraulic conductivity, the permeability of soil for water
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
A medium with a permeability of 1 darcy permits a flow of 1 cm 3 /s of a fluid with viscosity 1 cP (1 mPa·s) under a pressure gradient of 1 atm/cm acting across an area of 1 cm 2. Typical values of permeability range as high as 100,000 darcys for gravel, to less than 0.01 microdarcy for granite. Sand has a permeability of approximately 1 darcy ...