Search results
Results from the WOW.Com Content Network
The threshold value to determine when a data point fits a model (t), and the number of inliers (data points fitted to the model within t) required to assert that the model fits well to data (d) are determined based on specific requirements of the application and the dataset, and possibly based on experimental evaluation.
The liability-threshold model is a threshold model of categorical (usually binary) outcomes in which a large number of variables are summed to yield an overall 'liability' score; the observed outcome is determined by whether the latent score is smaller or larger than the threshold. The liability-threshold model is frequently employed in ...
A classification model (classifier or diagnosis [7]) is a mapping of instances between certain classes/groups.Because the classifier or diagnosis result can be an arbitrary real value (continuous output), the classifier boundary between classes must be determined by a threshold value (for instance, to determine whether a person has hypertension based on a blood pressure measure).
hists is a 2D-histogram of grayscale value and neighborhood average grayscale value pair. total is the number of pairs in the given image.it is determined by the number of the bins of 2D-histogram at each direction. threshold is the threshold obtained.
In the statistical learning theory framework, an algorithm is a strategy for choosing a function: given a training set = {(,), …, (,)} of inputs and their labels (the labels are usually ). Regularization strategies avoid overfitting by choosing a function that fits the data, but is not too complex.
Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units) A restricted Boltzmann machine (RBM) (also called a restricted Sherrington–Kirkpatrick model with external field or restricted stochastic Ising–Lenz–Little model) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.
There is a tradeoff of choosing N, the number of contiguous pixels and the threshold value t. On one hand the number of detected corner points should not be too many, on the other hand, the high performance should not be achieved by sacrificing computational efficiency. Without the improvement of machine learning, N is usually chosen as 12. A ...
Missing Value Treatment (attribute missingValueTreatment): indicates how the missing value replacement was derived (e.g. as value, mean or median). Targets: allows for post-processing of the predicted value in the format of scaling if the output of the model is continuous. Targets can also be used for classification tasks.