Search results
Results from the WOW.Com Content Network
The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point arithmetic originally established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard addressed many problems found in the diverse floating-point implementations that made them difficult to use reliably and ...
Floating-point representation is similar in concept to scientific notation. Logically, a floating-point number consists of: A signed (meaning positive or negative) digit string of a given length in a given radix (or base). This digit string is referred to as the significand, mantissa, or coefficient.
ARM processors support (via a floating-point control register bit) an "alternative half-precision" format, which does away with the special case for an exponent value of 31 (11111 2). [10] It is almost identical to the IEEE format, but there is no encoding for infinity or NaNs; instead, an exponent of 31 encodes normalized numbers in the range ...
The number 0.15625 represented as a single-precision IEEE 754-1985 floating-point number. See text for explanation. The three fields in a 64bit IEEE 754 float. Floating-point numbers in IEEE 754 format consist of three fields: a sign bit, a biased exponent, and a fraction. The following example illustrates the meaning of each.
A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
Biased representations are now primarily used for the exponent of floating-point numbers. The IEEE 754 floating-point standard defines the exponent field of a single-precision (32-bit) number as an 8-bit excess-127 field. The double-precision (64-bit) exponent field is an 11-bit excess-1023 field; see exponent bias.
In all these three encodings, positive or unsigned zero is represented by 0000 0000. However, the latter two encodings (with a signed zero) are uncommon for integer formats. The most common formats with a signed zero are floating-point formats (IEEE 754 formats or similar), described below. Negative zero by IEEE 754 representation in binary32