Search results
Results from the WOW.Com Content Network
The trivial case of the angular momentum of a body in an orbit is given by = where is the mass of the orbiting object, is the orbit's frequency and is the orbit's radius.. The angular momentum of a uniform rigid sphere rotating around its axis, instead, is given by = where is the sphere's mass, is the frequency of rotation and is the sphere's radius.
In mathematics and physics, the right-hand rule is a convention and a mnemonic, utilized to define the orientation of axes in three-dimensional space and to determine the direction of the cross product of two vectors, as well as to establish the direction of the force on a current-carrying conductor in a magnetic field.
The greater the angular momentum of the spinning object such as a top, the greater its tendency to continue to spin. The angular momentum of a rotating body is proportional to its mass and to how rapidly it is turning. In addition, the angular momentum depends on how the mass is distributed relative to the axis of rotation: the further away the ...
For reference and background, two closely related forms of angular momentum are given. In classical mechanics, the orbital angular momentum of a particle with instantaneous three-dimensional position vector x = (x, y, z) and momentum vector p = (p x, p y, p z), is defined as the axial vector = which has three components, that are systematically given by cyclic permutations of Cartesian ...
Also in some frames not tied to the body can it be possible to obtain such simple (diagonal tensor) equations for the rate of change of the angular momentum. Then ω must be the angular velocity for rotation of that frames axes instead of the rotation of the body. It is however still required that the chosen axes are still principal axes of ...
The area rule is a corollary of the angular momentum law in the form: The resulting moment is equal to the product of twice the mass and the time derivative of the areal velocity. [ 10 ] It refers to the ray r → {\displaystyle {\vec {r}}} to a point mass with mass m .
The direction of the torque can be determined by using the right hand grip rule: if the fingers of the right hand are curled from the direction of the lever arm to the direction of the force, then the thumb points in the direction of the torque. [8]
where u R is a unit vector pointing from the axis of rotation to one of the spheres, and Ω is a vector representing the angular rotation, with magnitude ω and direction normal to the plane of rotation given by the right-hand rule, m is the mass of the ball, and R is the distance from the axis of rotation to the spheres (the magnitude of the ...