Search results
Results from the WOW.Com Content Network
The anti-Markovnikov rule can be illustrated using the addition of hydrogen bromide to isobutylene in the presence of benzoyl peroxide or hydrogen peroxide. The reaction of HBr with substituted alkenes was prototypical in the study of free-radical additions. Early chemists discovered that the reason for the variability in the ratio of ...
Morris Selig Kharasch (August 24, 1895 – October 9, 1957) was a pioneering organic chemist best known for his work with free radical additions and polymerizations.He defined the peroxide effect, explaining how an anti-Markovnikov orientation could be achieved via free radical addition. [1]
Hydroboration–oxidation is an anti-Markovnikov reaction, with the hydroxyl group attaching to the less-substituted carbon. The reaction thus provides a more stereospecific and complementary regiochemical alternative to other hydration reactions such as acid-catalyzed addition and the oxymercuration–reduction process.
If an epoxide mechanism is followed, hydroxide groups are added in an anti fashion. Neither Markovnikov or anti-Markovnikov because the substituents are the same. Hydrobromination: Stereospecific: Can be syn or anti addition, depending on situation. When alkenes undergo hydrobromination, the alkyl bromides are formed Markovnikov.
The reaction mechanism involves free radicals of the general formula CXCl 2 (X = Cl, H). For the precursors carbon tetrachloride and chloroform, the requisite radicals can arise by abstraction of a halogen atom by a electropositive metal. The addition proceeds in an anti-Markovnikov fashion. Early work linked the addition to olefin polymerization.
In terms of regiochemistry, hydroboration is typically anti-Markovnikov, i.e. the hydrogen adds to the most substituted carbon of the double bond. That the regiochemistry is reverse of a typical HX addition reflects the polarity of the B δ+-H δ− bonds. Hydroboration proceeds via a four-membered transition state: the hydrogen and the boron ...
The reaction follows Markovnikov's rule (the hydroxy group will always be added to the more substituted carbon). The oxymercuration part of the reaction involves anti addition of OH group but the demercuration part of the reaction involves free radical mechanism and is not stereospecific, i.e. H and OH may be syn or anti to each other. [2] [3] [4]
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.