Search results
Results from the WOW.Com Content Network
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
It is one form of mass transfer. [1] Dispersive mass flux is analogous to diffusion, and it can also be described using Fick's first law: =, where c is mass concentration of the species being dispersed, E is the dispersion coefficient, and x is the position in the direction of the concentration gradient.
Chemical diffusion occurs in a presence of concentration (or chemical potential) gradient and it results in net transport of mass. This is the process described by the diffusion equation. This diffusion is always a non-equilibrium process, increases the system entropy, and brings the system closer to equilibrium.
Diffusion is a stochastic process due to the inherent randomness of the diffusing entity and can be used to model many real-life stochastic scenarios. Therefore, diffusion and the corresponding mathematical models are used in several fields beyond physics, such as statistics , probability theory , information theory , neural networks , finance ...
In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion, resulting from the random movements and collisions of the particles (see Fick's laws of diffusion). In mathematics, it is related to Markov processes , such as random walks , and applied in many other fields, such as materials science , information ...
The resulting clusters are irregular, but statistically self-similar. They are examples of mass fractals, whereby their mass M grows with their typical size characterized by the radius of gyration R g as a power-law [2] where d is the mass fractal dimension. Depending whether the aggregation is fast or slow, one refers to diffusion limited ...
Dispersion is a process by which (in the case of solid dispersing in a liquid) agglomerated particles are separated from each other, and a new interface between the inner surface of the liquid dispersion medium and the surface of the dispersed particles is generated. This process is facilitated by molecular diffusion and convection. [4]
Thomas Graham. Graham's law of effusion (also called Graham's law of diffusion) was formulated by Scottish physical chemist Thomas Graham in 1848. [1] Graham found experimentally that the rate of effusion of a gas is inversely proportional to the square root of the molar mass of its particles. [1]