enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rytz's construction - Wikipedia

    en.wikipedia.org/wiki/Rytz's_construction

    The Rytz’s axis construction is a basic method of descriptive geometry to find the axes, the semi-major axis and semi-minor axis and the vertices of an ellipse, starting from two conjugated half-diameters. If the center and the semi axis of an ellipse are determined the ellipse can be drawn using an ellipsograph or by hand (see ellipse).

  3. MathType - Wikipedia

    en.wikipedia.org/wiki/MathType

    MathType is a graphical editor for mathematical equations, allowing entry with the mouse or keyboard in a full graphical WYSIWYG environment. [2] This contrasts to document markup languages such as LaTeX where equations are entered as markup in a text editor and then processed into a typeset document as a separate step.

  4. Ellipsoidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Ellipsoidal_coordinates

    An alternative parametrization exists that closely follows the angular parametrization of spherical coordinates: [1] = ⁡ ⁡, = ⁡ ⁡, = ⁡. Here, > parametrizes the concentric ellipsoids around the origin and [,] and [,] are the usual polar and azimuthal angles of spherical coordinates, respectively.

  5. Superellipse - Wikipedia

    en.wikipedia.org/wiki/Superellipse

    Examples of superellipses for =, =. A superellipse, also known as a Lamé curve after Gabriel Lamé, is a closed curve resembling the ellipse, retaining the geometric features of semi-major axis and semi-minor axis, and symmetry about them, but defined by an equation that allows for various shapes between a rectangle and an ellipse.

  6. Perimeter of an ellipse - Wikipedia

    en.wikipedia.org/wiki/Perimeter_of_an_ellipse

    An ellipse has two axes and two foci Unlike most other elementary shapes, such as the circle and square , there is no algebraic equation to determine the perimeter of an ellipse . Throughout history, a large number of equations for approximations and estimates have been made for the perimeter of an ellipse.

  7. Elliptic curve - Wikipedia

    en.wikipedia.org/wiki/Elliptic_curve

    This equation is not defined on the line at infinity, but we can multiply by to get one that is : Z Y 2 = X 3 + a Z 2 X + b Z 3 {\displaystyle ZY^{2}=X^{3}+aZ^{2}X+bZ^{3}} This resulting equation is defined on the whole projective plane, and the curve it defines projects onto the elliptic curve of interest.

  8. Elliptic curve point multiplication - Wikipedia

    en.wikipedia.org/wiki/Elliptic_curve_point...

    Given a curve, E, defined by some equation in a finite field (such as E: y 2 = x 3 + ax + b), point multiplication is defined as the repeated addition of a point along that curve. Denote as nP = P + P + P + … + P for some scalar (integer) n and a point P = ( x , y ) that lies on the curve, E .

  9. Principal axis theorem - Wikipedia

    en.wikipedia.org/wiki/Principal_axis_theorem

    The equation is for an ellipse, since both eigenvalues are positive. (Otherwise, if one were positive and the other negative, it would be a hyperbola.) The principal axes are the lines spanned by the eigenvectors. The minimum and maximum distances to the origin can be read off the equation in diagonal form.