Search results
Results from the WOW.Com Content Network
In control theory, overshoot refers to an output exceeding its final, steady-state value. [2] For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step
For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step response minus one. The percentage overshoot (PO) is related to damping ratio (ζ) by:
where the τ 1 ≫ τ 2 is applicable because of the overshoot control condition, which makes τ 1 = αβA OL τ 2. Often the settling time condition is referred to by saying the settling period is inversely proportional to the unity gain bandwidth, because 1/(2 π τ 2 ) is close to this bandwidth for an amplifier with typical dominant pole ...
The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.
Tay, Mareels and Moore (1998) defined settling time as "the time required for the response curve to reach and stay within a range of certain percentage (usually 5% or 2%) of the final value." [ 2 ] Mathematical detail
The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for >, and its analytic continuation elsewhere.
In number theory, the local zeta function Z(V, s) (sometimes called the congruent zeta function or the Hasse–Weil zeta function) is defined as (,) = (= ())where V is a non-singular n-dimensional projective algebraic variety over the field F q with q elements and N k is the number of points of V defined over the finite field extension F q k of F q.
This definition of dimension could be put on a strong mathematical foundation, similar to the definition of Hausdorff dimension for continuous systems. The mathematically robust definition uses the concept of a zeta function for a graph. The complex network zeta function and the graph surface function were introduced to characterize large graphs.