Search results
Results from the WOW.Com Content Network
An integral, or intrinsic, membrane protein (IMP) [1] is a type of membrane protein that is permanently attached to the biological membrane. All transmembrane proteins can be classified as IMPs, but not all IMPs are transmembrane proteins. [ 2 ]
When consecutively measuring amino acids of a protein, changes in value indicate attraction of specific protein regions towards the hydrophobic region inside lipid bilayer. The hydrophobic or hydrophilic character of a compound or amino acid is its hydropathic character, [1] hydropathicity, or hydropathy.
n/a Ensembl n/a n/a UniProt n a n/a RefSeq (mRNA) n/a n/a RefSeq (protein) n/a n/a Location (UCSC) n/a n/a PubMed search n/a n/a Wikidata View/Edit Human Glucose transporter 1 (or GLUT1), also known as solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1), is a uniporter protein that in humans is encoded by the SLC2A1 gene. GLUT1 facilitates the transport of glucose across ...
Schematic representation of transmembrane proteins: 1) a single-pass membrane protein 2) a multipass membrane protein (α-helix) 3) a multipass membrane protein β-sheet. The membrane is represented in light yellow. A transmembrane protein is a type of integral membrane protein that spans the entirety of the cell membrane.
It is an integral membrane protein carrier with a hydrophilic interior, which allows it to bind to glucose. As GLUT 1 is a type of carrier protein, it will undergo a conformational change to allow glucose to enter the other side of the plasma membrane. [22] GLUT 1 is commonly found in the red blood cell membranes of mammals. [23]
Integral proteins: Immersed in the bi-layer and held in place by the affinity of hydrophobic parts of the protein for the hydrophobic tails of phospholipids on interior of the layer. Peripheral proteins : More hydrophilic , and thus are non- covalently linked to the polar heads of phospholipids and other hydrophilic parts of other membrane ...
Peripheral membrane proteins are temporarily attached either to the lipid bilayer or to integral proteins by a combination of hydrophobic, electrostatic, and other non-covalent interactions. Peripheral proteins dissociate following treatment with a polar reagent, such as a solution with an elevated pH or high salt concentrations. [citation needed]
Two hydrophobic loops contain conserved asparagine–proline–alanine ("NPA motif") which form a barrel surrounding a central pore-like region that contains additional protein density. [3] Because aquaporins are usually always open and are prevalent in just about every cell type, this leads to a misconception that water readily passes through ...