enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  3. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    Therefore, nonzero, non-scalar quaternions, or positive scalar quaternions, have exactly two roots, while 0 has exactly one root (0), and negative scalar quaternions have infinitely many roots, which are the vector quaternions located on {} (), i.e., where the scalar part is zero and the vector part is located on the 2-sphere with radius .

  4. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    Spatial rotations in three dimensions can be parametrized using both Euler angles and unit quaternions. This article explains how to convert between the two representations. Actually this simple use of "quaternions" was first presented by Euler some seventy years earlier than Hamilton to solve the problem of magic squares. For this reason the ...

  5. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    The quaternion can be related to the rotation vector form of the axis angle rotation by the exponential map over the quaternions, = /, where v is the rotation vector treated as a quaternion. A single multiplication by a versor, either left or right, is itself a rotation, but in four dimensions.

  6. Spinor - Wikipedia

    en.wikipedia.org/wiki/Spinor

    With the identification of the even-graded elements with the algebra of quaternions, as in the case of two dimensions the only representation of the algebra of even-graded elements is on itself. [ t ] Thus the (real [ u ] ) spinors in three-dimensions are quaternions, and the action of an even-graded element on a spinor is given by ordinary ...

  7. Category:Quaternions - Wikipedia

    en.wikipedia.org/wiki/Category:Quaternions

    The quaternions are a non-commutative extension of the complex numbers which have numerous applications in mathematics, physics, and computer graphics The main article for this category is Quaternion .

  8. Rotations in 4-dimensional Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Rotations_in_4-dimensional...

    The conjugate of that eigenvalue is also unity, yielding a pair of eigenvectors which define a fixed plane, and so the rotation is simple. In quaternion notation, a proper (i.e., non-inverting) rotation in SO(4) is a proper simple rotation if and only if the real parts of the unit quaternions Q L and Q R are equal in magnitude and have the same ...

  9. Screw theory - Wikipedia

    en.wikipedia.org/wiki/Screw_theory

    Note that F is stable under the rotation q → p −1 qp and under the translation (1 + εr)(1 + εs) = 1 + ε(r + s) for any vector quaternions r and s. F is a 3-flat in the eight-dimensional space of dual quaternions. This 3-flat F represents space, and the homography constructed, restricted to F, is a screw displacement of space.