enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  3. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    Quaternions are also used in one of the proofs of Lagrange's four-square theorem in number theory, which states that every nonnegative integer is the sum of four integer squares. As well as being an elegant theorem in its own right, Lagrange's four square theorem has useful applications in areas of mathematics outside number theory, such as ...

  4. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    Spatial rotations in three dimensions can be parametrized using both Euler angles and unit quaternions. This article explains how to convert between the two representations. Actually this simple use of "quaternions" was first presented by Euler some seventy years earlier than Hamilton to solve the problem of magic squares. For this reason the ...

  5. History of quaternions - Wikipedia

    en.wikipedia.org/wiki/History_of_quaternions

    Quaternions continued to be a well-studied mathematical structure in the twentieth century, as the third term in the Cayley–Dickson construction of hypercomplex number systems over the reals, followed by the octonions, the sedenions, the trigintaduonions; they are also a useful tool in number theory, particularly in the study of the ...

  6. Classical Hamiltonian quaternions - Wikipedia

    en.wikipedia.org/wiki/Classical_Hamiltonian...

    This article describes Hamilton's original treatment of quaternions, using his notation and terms. Hamilton's treatment is more geometric than the modern approach, which emphasizes quaternions' algebraic properties. Mathematically, quaternions discussed differ from the modern definition only by the terminology which is used.

  7. Quaternionic analysis - Wikipedia

    en.wikipedia.org/wiki/Quaternionic_analysis

    In mathematics, quaternionic analysis is the study of functions with quaternions as the domain and/or range. Such functions can be called functions of a quaternion variable just as functions of a real variable or a complex variable are called.

  8. Versor - Wikipedia

    en.wikipedia.org/wiki/Versor

    In mathematics, a versor is a quaternion of norm one (a unit quaternion).Each versor has the form = ⁡ = ⁡ + ⁡, =, [,], where the r 2 = −1 condition means that r is a unit-length vector quaternion (or that the first component of r is zero, and the last three components of r are a unit vector in 3 dimensions).

  9. Category:Quaternions - Wikipedia

    en.wikipedia.org/wiki/Category:Quaternions

    The quaternions are a non-commutative extension of the complex numbers which have numerous applications in mathematics, physics, and computer graphics The main article for this category is Quaternion .