Search results
Results from the WOW.Com Content Network
Gauss [10] pointed out that the four squares theorem follows easily from the fact that any positive integer that is 1 or 2 mod 4 is a sum of 3 squares, because any positive integer not divisible by 4 can be reduced to this form by subtracting 0 or 1 from it. However, proving the three-square theorem is considerably more difficult than a direct ...
Legendre's three-square theorem states which numbers can be expressed as the sum of three squares; Jacobi's four-square theorem gives the number of ways that a number can be represented as the sum of four squares. For the number of representations of a positive integer as a sum of squares of k integers, see Sum of squares function.
In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.
In number theory, the sum of squares function is an arithmetic function that gives the number of representations for a given positive integer n as the sum of k squares, where representations that differ only in the order of the summands or in the signs of the numbers being squared are counted as different.
On the other hand, the primes 3, 7, 11, 19, 23 and 31 are all congruent to 3 modulo 4, and none of them can be expressed as the sum of two squares. This is the easier part of the theorem, and follows immediately from the observation that all squares are congruent to 0 (if number squared is even) or 1 (if number squared is odd) modulo 4.
A square whose side length is a triangular number can be partitioned into squares and half-squares whose areas add to cubes. From Gulley (2010).The n th coloured region shows n squares of dimension n by n (the rectangle is 1 evenly divided square), hence the area of the n th region is n times n × n.
The sum of the first odd integers, beginning with one, is a perfect square: 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 + 7, etc. This explains Galileo's law of odd numbers : if a body falling from rest covers one unit of distance in the first arbitrary time interval, it covers 3, 5, 7, etc., units of distance in subsequent time intervals of the same length.
Another geometric proof proceeds as follows: We start with the figure shown in the first diagram below, a large square with a smaller square removed from it. The side of the entire square is a, and the side of the small removed square is b. The area of the shaded region is . A cut is made, splitting the region into two rectangular pieces, as ...