enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  3. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    The sphere has the smallest surface area of all surfaces that enclose a given volume, and it encloses the largest volume among all closed surfaces with a given surface area. [11] The sphere therefore appears in nature: for example, bubbles and small water drops are roughly spherical because the surface tension locally minimizes surface area.

  4. Spherical cap - Wikipedia

    en.wikipedia.org/wiki/Spherical_cap

    The curved surface area of the spherical segment bounded by two parallel disks is the difference of surface areas of their respective spherical caps. For a sphere of radius r {\displaystyle r} , and caps with heights h 1 {\displaystyle h_{1}} and h 2 {\displaystyle h_{2}} , the area is

  5. Radius of curvature (optics) - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature_(optics)

    Radius of curvature sign convention for optical design. Radius of curvature (ROC) has specific meaning and sign convention in optical design. A spherical lens or mirror surface has a center of curvature located either along or decentered from the system local optical axis. The vertex of the lens

  6. Sagitta (optics) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(optics)

    where R is the radius of curvature of the optical surface. The sag S ( r ) is the displacement along the optic axis of the surface from the vertex, at distance r {\displaystyle r} from the axis. A good explanation of both this approximate formula and the exact formula can be found here .

  7. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    If a surface has constant Gaussian curvature, it is called a surface of constant curvature. [52] The unit sphere in E 3 has constant Gaussian curvature +1. The Euclidean plane and the cylinder both have constant Gaussian curvature 0. A unit pseudosphere has constant Gaussian curvature -1 (apart from its equator, that is singular).

  8. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    When the sagitta is small in comparison to the radius, it may be approximated by the formula [2] s ≈ l 2 8 r . {\displaystyle s\approx {\frac {l^{2}}{8r}}.} Alternatively, if the sagitta is small and the sagitta, radius, and chord length are known, they may be used to estimate the arc length by the formula

  9. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    In a curved surface such as the sphere, the area of a disc on the surface differs from the area of a disc of the same radius in flat space. This difference (in a suitable limit) is measured by the scalar curvature. The difference in area of a sector of the disc is measured by the Ricci curvature.