enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    Alternative definitions were discussed by other Greeks, often as part of an attempt to prove the parallel postulate. Proclus attributes a definition of parallel lines as equidistant lines to Posidonius and quotes Geminus in a similar vein. Simplicius also mentions Posidonius' definition as well as its modification by the philosopher Aganis. [7]

  3. Duality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Duality_(mathematics)

    Theorems showing that certain objects of interest are the dual spaces (in the sense of linear algebra) of other objects of interest are often called dualities. Many of these dualities are given by a bilinear pairing of two K-vector spaces A ⊗ B → K. For perfect pairings, there is, therefore, an isomorphism of A to the dual of B.

  4. Transversal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Transversal_(geometry)

    If the two angles of one pair are congruent (equal in measure), then the angles of each of the other pairs are also congruent. Proposition 1.27 of Euclid's Elements , a theorem of absolute geometry (hence valid in both hyperbolic and Euclidean Geometry ), proves that if the angles of a pair of alternate angles of a transversal are congruent ...

  5. Duality (projective geometry) - Wikipedia

    en.wikipedia.org/wiki/Duality_(projective_geometry)

    In projective geometry, duality or plane duality is a formalization of the striking symmetry of the roles played by points and lines in the definitions and theorems of projective planes. There are two approaches to the subject of duality, one through language (§ Principle of duality) and the other a more functional approach through special ...

  6. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    Thus in differential geometry, a line may be interpreted as a geodesic (shortest path between points), while in some projective geometries, a line is a 2-dimensional vector space (all linear combinations of two independent vectors). This flexibility also extends beyond mathematics and, for example, permits physicists to think of the path of a ...

  7. Screw theory - Wikipedia

    en.wikipedia.org/wiki/Screw_theory

    This is known as Chasles' theorem. The six parameters that define a screw motion are the four independent components of the Plücker vector that defines the screw axis, together with the rotation angle about and linear slide along this line, and form a pair of vectors called a screw.

  8. Incidence geometry - Wikipedia

    en.wikipedia.org/wiki/Incidence_geometry

    A linear space is a partial linear space such that: [7] Every pair of distinct points determines exactly one line. Some authors add a "non-degeneracy" (or "non-triviality") axiom to the definition of a (partial) linear space, such as: There exist at least two distinct lines. [8]

  9. Affine geometry - Wikipedia

    en.wikipedia.org/wiki/Affine_geometry

    In traditional geometry, affine geometry is considered to be a study between Euclidean geometry and projective geometry. On the one hand, affine geometry is Euclidean geometry with congruence left out; on the other hand, affine geometry may be obtained from projective geometry by the designation of a particular line or plane to represent the ...