enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. T-norm - Wikipedia

    en.wikipedia.org/wiki/T-norm

    As the standard negator is used in the above definition of a t-norm/t-conorm pair, this can be generalized as follows: A De Morgan triplet is a triple (T,⊥,n) such that [1] T is a t-norm; ⊥ is a t-conorm according to the axiomatic definition of t-conorms as mentioned above; n is a strong negator

  3. T-norm fuzzy logics - Wikipedia

    en.wikipedia.org/wiki/T-norm_fuzzy_logics

    T-norm fuzzy logics belong in broader classes of fuzzy logics and many-valued logics. In order to generate a well-behaved implication , the t-norms are usually required to be left-continuous ; logics of left-continuous t-norms further belong in the class of substructural logics , among which they are marked with the validity of the law of ...

  4. Fuzzy concept - Wikipedia

    en.wikipedia.org/wiki/Fuzzy_concept

    A process of defuzzification is said to occur, when fuzzy concepts can be logically described in terms of fuzzy sets, or the relationships between fuzzy sets, which makes it possible to define variations in the meaning or applicability of concepts as quantities. Effectively, qualitative differences are in that case described more precisely as ...

  5. Uniformly convex space - Wikipedia

    en.wikipedia.org/wiki/Uniformly_convex_space

    The unit sphere can be replaced with the closed unit ball in the definition. Namely, a normed vector space is uniformly convex if and only if for every < there is some > so that, for any two vectors and in the closed unit ball (i.e. ‖ ‖ and ‖ ‖) with ‖ ‖, one has ‖ + ‖ (note that, given , the corresponding value of could be smaller than the one provided by the original weaker ...

  6. Locally convex topological vector space - Wikipedia

    en.wikipedia.org/wiki/Locally_convex_topological...

    If is a topological vector space and if this convex absorbing subset is also a bounded subset of , then the absorbing disk := | | = will also be bounded, in which case will be a norm and (,) will form what is known as an auxiliary normed space. If this normed space is a Banach space then is called a Banach disk.

  7. Category:Normed spaces - Wikipedia

    en.wikipedia.org/wiki/Category:Normed_spaces

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  8. Spaces of test functions and distributions - Wikipedia

    en.wikipedia.org/wiki/Spaces_of_test_functions...

    The space of distributions, being defined as the continuous dual space of (), is then endowed with the (non-metrizable) strong dual topology induced by () and the canonical LF-topology (this topology is a generalization of the usual operator norm induced topology that is placed on the continuous dual spaces of normed spaces).

  9. Normed vector space - Wikipedia

    en.wikipedia.org/wiki/Normed_vector_space

    Every normed vector space can be "uniquely extended" to a Banach space, which makes normed spaces intimately related to Banach spaces. Every Banach space is a normed space but converse is not true. For example, the set of the finite sequences of real numbers can be normed with the Euclidean norm , but it is not complete for this norm.