enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  3. Quaternionic analysis - Wikipedia

    en.wikipedia.org/wiki/Quaternionic_analysis

    Such functions can be called functions of a quaternion variable just as functions of a real variable or a complex variable are called. As with complex and real analysis , it is possible to study the concepts of analyticity , holomorphy , harmonicity and conformality in the context of quaternions.

  4. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    The real quaternion 1 is the identity element. The real quaternions commute with all other quaternions, that is aq = qa for every quaternion q and every real quaternion a. In algebraic terminology this is to say that the field of real quaternions are the center of this quaternion algebra.

  5. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    A quaternion has 4 real values: q w (the real part or the scalar part) and q x q y q z (the imaginary part). Defining the norm of the quaternion as follows: ‖ ‖ = + + + A unit quaternion satisfies: ‖ ‖ =

  6. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    Rotations are not commutative (for example, rotating R 90° in the x-y plane followed by S 90° in the y-z plane is not the same as S followed by R), making the 3D rotation group a nonabelian group. Moreover, the rotation group has a natural structure as a manifold for which the group operations are smoothly differentiable, so it is in fact a ...

  7. Euler–Rodrigues formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Rodrigues_formula

    In other words, the group of unit quaternions with multiplication, modulo the negative sign, is isomorphic to the group of rotations with composition. A rotation in 3D can thus be represented by a quaternion q: = ⁡ + ⁡, where:

  8. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    The rotation group is a Lie group of rotations about a fixed point. This (common) fixed point or center is called the center of rotation and is usually identified with the origin. The rotation group is a point stabilizer in a broader group of (orientation-preserving) motions. For a particular rotation: The axis of rotation is a line of its ...

  9. Rotations in 4-dimensional Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Rotations_in_4-dimensional...

    The conjugate of that eigenvalue is also unity, yielding a pair of eigenvectors which define a fixed plane, and so the rotation is simple. In quaternion notation, a proper (i.e., non-inverting) rotation in SO(4) is a proper simple rotation if and only if the real parts of the unit quaternions Q L and Q R are equal in magnitude and have the same ...