Search results
Results from the WOW.Com Content Network
In logic, a rule of replacement [1] [2] [3] is a transformation rule that may be applied to only a particular segment of an expression. A logical system may be constructed so that it uses either axioms, rules of inference, or both as transformation rules for logical expressions in the system. Whereas a rule of inference is always applied to a ...
In propositional logic, material implication [1] [2] is a valid rule of replacement that allows a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not-or and that either form can replace the other in logical proofs.
where the rule is that wherever an instance of "()" appears on a line of a proof, it can be replaced with "()", and vice versa. Import-export is a name given to the statement as a theorem or truth-functional tautology of propositional logic:
In propositional logic, tautology is either of two commonly used rules of replacement. [1] [2] [3] The rules are used to eliminate redundancy in disjunctions and conjunctions when they occur in logical proofs. They are: The principle of idempotency of disjunction:
The domain dom(σ) of a substitution σ is commonly defined as the set of variables actually replaced, i.e. dom(σ) = { x ∈ V | xσ ≠ x}.A substitution is called a ground substitution if it maps all variables of its domain to ground, i.e. variable-free, terms.
Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule: when p=T (the hypothesis selects the first two lines of the table), we see (at column-14) that p∨q=T.
In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs. Within an expression containing two or more occurrences in a row of the same associative operator, the order in which the operations are performed does not matter as long as the sequence of the operands is not changed. That is (after ...
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.