Search results
Results from the WOW.Com Content Network
A rapidly exploring random tree (RRT) is an algorithm designed to efficiently search nonconvex, high-dimensional spaces by randomly building a space-filling tree.The tree is constructed incrementally from samples drawn randomly from the search space and is inherently biased to grow towards large unsearched areas of the problem.
A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or procedure. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output (or both) are ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Cipher algorithms and cryptographic hashes can be used as very high-quality pseudorandom number generators. However, generally they are considerably slower (typically by a factor 2–10) than fast, non-cryptographic random number generators. These include: Stream ciphers.
The information stored per node in the randomized binary tree is simpler than in a treap (a small integer rather than a high-precision random number), but it makes a greater number of calls to the random number generator (O(log n) calls per insertion or deletion rather than one call per insertion) and the insertion procedure is slightly more ...
In computer science and graph theory, Karger's algorithm is a randomized algorithm to compute a minimum cut of a connected graph. It was invented by David Karger and first published in 1993. [1] The idea of the algorithm is based on the concept of contraction of an edge (,) in an undirected graph = (,).
special designs based on mathematical hardness assumptions: examples include the Micali–Schnorr generator, [17] Naor-Reingold pseudorandom function and the Blum Blum Shub algorithm, which provide a strong security proof (such algorithms are rather slow compared to traditional constructions, and impractical for many applications)
The algorithm generates a random permutations uniformly so long as the hardware operates in a fair manner. In 2015, Bacher et al. produced MERGESHUFFLE, an algorithm that divides the array into blocks of roughly equal size, uses Fisher—Yates to shuffle each block, and then uses a random merge recursively to give the shuffled array.