Search results
Results from the WOW.Com Content Network
Rules for calculating the periods of repeating decimals from rational fractions were given by James Whitbread Lee Glaisher in 1878. [5] For a prime p, the period of its reciprocal divides p − 1. [6] The sequence of recurrence periods of the reciprocal primes (sequence A002371 in the OEIS) appears in the 1973 Handbook of Integer Sequences.
A repeating decimal or recurring decimal is a decimal ... A proper prime is a prime p which ends in the digit 1 in base 10 and whose reciprocal in base 10 has a ...
A prime reciprocal magic square is a magic square using the decimal digits of the ... The first few prime numbers in decimal whose reciprocals can be used to ...
For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution). Multiplying by a number is the same as dividing by its reciprocal and vice versa ...
For any integer coprime to 10, its reciprocal is a repeating decimal without any non-recurring digits. E.g. 1 ⁄ 143 = 0. 006993 006993 006993.... While the expression of a single series with vinculum on top is adequate, the intention of the above expression is to show that the six cyclic permutations of 006993 can be obtained from this repeating decimal if we select six consecutive digits ...
The reciprocal of a fraction is another fraction with the numerator and denominator exchanged. The reciprocal of 3 / 7 , for instance, is 7 / 3 . The product of a non-zero fraction and its reciprocal is 1, hence the reciprocal is the multiplicative inverse of a fraction. The reciprocal of a proper fraction is improper, and the ...
The decimal representation of an irrational number is ... The multiplicative identity element is 1 and the multiplicative inverse of a number is the reciprocal of ...
The reciprocal of five conventionally appears twice in the sum. The sum of the reciprocals of the Proth primes, of which there may be finitely many or infinitely many, is known to be finite, approximately 0.747392479. [2] The prime quadruplets are pairs of twin primes with only one odd number between them.