enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Massive parallel sequencing - Wikipedia

    en.wikipedia.org/wiki/Massive_parallel_sequencing

    This design is very different from that of Sanger sequencing—also known as capillary sequencing or first-generation sequencing—which is based on electrophoretic separation of chain-termination products produced in individual sequencing reactions. [6] This methodology allows sequencing to be completed on a larger scale. [7]

  3. Multilocus sequence typing - Wikipedia

    en.wikipedia.org/wiki/Multilocus_sequence_typing

    The advent of second-generation sequencing technologies has made it possible to obtain sequence information across the entire bacterial genome at relatively modest cost and effort, and MLST can now be assigned from whole-genome sequence information, rather than sequencing each locus separately as was the practice when MLST was first developed. [15]

  4. DNA sequencing - Wikipedia

    en.wikipedia.org/wiki/DNA_sequencing

    The first of the high-throughput sequencing technologies, massively parallel signature sequencing (or MPSS, also called next generation sequencing), was developed in the 1990s at Lynx Therapeutics, a company founded in 1992 by Sydney Brenner and Sam Eletr. MPSS was a bead-based method that used a complex approach of adapter ligation followed by ...

  5. DNA annotation - Wikipedia

    en.wikipedia.org/wiki/DNA_annotation

    [9] [10] They appeared as a necessity to handle the enormous amount of data produced by the Maxam-Gilbert and Sanger DNA sequencing techniques developed in the late 1970s. The first software used to analyze sequencing reads is the Staden Package, created by Rodger Staden in 1977. [11]

  6. Hybrid genome assembly - Wikipedia

    en.wikipedia.org/wiki/Hybrid_genome_assembly

    The workflow of a typical hybrid genome assembly experiment using second- and third-generation sequencing technologies. Figure adapted from Wang et al., 2012 [14]. One hybrid approach to genome assembly involves supplementing short, accurate second-generation sequencing data (i.e. from IonTorrent, Illumina or Roche 454) with long less accurate third-generation sequencing data (i.e. from PacBio ...

  7. Read (biology) - Wikipedia

    en.wikipedia.org/wiki/Read_(biology)

    Sequencing technologies vary in the length of reads produced. Reads of length 20-40 base pairs (bp) are referred to as ultra-short. [2] Typical sequencers produce read lengths in the range of 100-500 bp. [3] However, Pacific Biosciences platforms produce read lengths of approximately 1500 bp. [4] Read length is a factor which can affect the results of biological studies. [5]

  8. Chromatin immunoprecipitation - Wikipedia

    en.wikipedia.org/wiki/Chromatin_immunoprecipitation

    Chromatin Immunoprecipitation sequencing, also known as ChIP-seq, is an experimental technique used to identify transcription factor binding events throughout an entire genome. Knowing how the proteins in the human body interact with DNA to regulate gene expression is a key component of our knowledge of human diseases and biological processes.

  9. ABI Solid Sequencing - Wikipedia

    en.wikipedia.org/wiki/ABI_Solid_Sequencing

    During sequencing, each base in the template is sequenced twice, and the resulting data are decoded according to this scheme. SOLiD (Sequencing by Oligonucleotide Ligation and Detection) is a next-generation DNA sequencing technology developed by Life Technologies and has been commercially available since