Search results
Results from the WOW.Com Content Network
Most wet scrubbers used for particulate control operate with liquid-to-gas ratios in the range of 4 to 20 gallons per 1,000 actual cubic foot (0.5 to 3 litres per actual cubic metre). Depending on scrubber design, a minimum volume of liquid is required to "wet" the scrubber internals and create sufficient collection targets.
The term wet scrubber describes a variety of devices that remove pollutants from a furnace flue gas or from other gas streams. In a wet scrubber, the polluted gas stream is brought into contact with the scrubbing liquid, by spraying it with the liquid, by forcing it through a pool of liquid, or by some other contact method, so as to remove the pollutants.
Cyclonic scrubbers are generally low- to medium-energy devices, with pressure drops of 4 to 25 cm (1.5 to 10 in) of water. Commercially available designs include the irrigated cyclone scrubber and the cyclonic spray scrubber. In the irrigated cyclone (Figure 1), the inlet gas enters near the top of the scrubber into the water sprays. The gas is ...
All venturi scrubbers require an entrainment separator because the high velocity of gas through the scrubber will have a tendency to entrain the droplets with the outlet clean gas stream. Cyclonic, mesh-pad, and blade separators are all used to remove liquid droplets from the flue gas and return the liquid to the scrubber water.
Figure 1-Centrifugal fan scrubber. Mechanically aided scrubbers are a form of pollution control technology. This type of technology is a part of the group of air pollution controls collectively referred to as wet scrubbers. In addition to using liquid sprays or the exhaust stream, scrubbing systems can use motors to supply energy.
Spray towers are low energy scrubbers. Contacting power is much lower than in venturi scrubbers, and the pressure drops across such systems are generally less than 2.5 cm (1 in) of water. The collection efficiency for small particles is correspondingly lower than in more energy-intensive devices.
The ultimate strength of concrete is influenced by the water-cementitious ratio (w/cm), the design constituents, and the mixing, placement and curing methods employed. All things being equal, concrete with a lower water-cement (cementitious) ratio makes a stronger concrete than that with a higher ratio. [2]
Wet scrubbers can also be used for heat recovery from hot gases by flue-gas condensation. [1] In this mode, termed a condensing scrubber, water from the scrubber drain is circulated through a cooler to the nozzles at the top of the scrubber. The hot gas enters the scrubber at the bottom.