Search results
Results from the WOW.Com Content Network
Defining cerebral cytoarchitecture began with the advent of histology—the science of slicing and staining brain slices for examination. [2] It is credited to the Viennese psychiatrist Theodor Meynert (1833–1892), who in 1867 noticed regional variations in the histological structure of different parts of the gray matter in the cerebral hemispheres.
Cell-based models are mathematical models that represent biological cells as discrete entities. Within the field of computational biology they are often simply called agent-based models [1] of which they are a specific application and they are used for simulating the biomechanics of multicellular structures such as tissues. to study the influence of these behaviors on how tissues are organised ...
This model is the Integrate-and-Fire (IF) model that was mentioned in Section 2.3. Closely related to IF model is a model called Spike Response Model (SRM) (Gerstner, W. (1995) [15] Pages 738-758) that is dependent on impulse function response convoluted with the input stimulus signal. This forms a base for a large number of models developed ...
A non-biological entity with a cellular organizational structure (also known as a cellular organization, cellular system, nodal organization, nodal structure, et cetera) is set up in such a way that it mimics how natural systems within biology work, with individual 'cells' or 'nodes' working somewhat independently to establish goals and tasks ...
A cellular model is a mathematical model of aspects of a biological cell, for the purposes of in silico research. Developing such models has been a task of systems biology and mathematical biology .
Brain cells make up the functional tissue of the brain. The rest of the brain tissue is the structural stroma that includes connective tissue such as the meninges , blood vessels , and ducts. The two main types of cells in the brain are neurons , also known as nerve cells, and glial cells , also known as neuroglia. [ 1 ]
The theta model, or Ermentrout–Kopell canonical Type I model, is mathematically equivalent to the quadratic integrate-and-fire model which in turn is an approximation to the exponential integrate-and-fire model and the Hodgkin-Huxley model. It is called a canonical model because it is one of the generic models for constant input close to the ...
Cellular automata have found application in various areas, including physics, theoretical biology and microstructure modeling. A cellular automaton consists of a regular grid of cells, each in one of a finite number of states, such as on and off (in contrast to a coupled map lattice). The grid can be in any finite number of dimensions.