enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    In probability and functional analysis, the zero norm induces a complete metric topology for the space of measurable functions and for the F-space of sequences with F–norm () / (+). [15] Here we mean by F-norm some real-valued function ‖ ‖ on an F-space with distance , such that ‖ ‖ = (,).

  3. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    A comparison between the L1 ball and the L2 ball in two dimensions gives an intuition on how L1 regularization achieves sparsity. Enforcing a sparsity constraint on can lead to simpler and more interpretable models. This is useful in many real-life applications such as computational biology. An example is developing a simple predictive test for ...

  4. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.

  5. L-infinity - Wikipedia

    en.wikipedia.org/wiki/L-infinity

    In mathematics, , the (real or complex) vector space of bounded sequences with the supremum norm, and = (,,), the vector space of essentially bounded measurable functions with the essential supremum norm, are two closely related Banach spaces. In fact the former is a special case of the latter.

  6. Lp space - Wikipedia

    en.wikipedia.org/wiki/Lp_space

    For a real number, the -norm or -norm of is defined by ‖ ‖ = (| | + | | + + | |) /. The absolute value bars can be dropped when p {\displaystyle p} is a rational number with an even numerator in its reduced form, and x {\displaystyle x} is drawn from the set of real numbers, or one of its subsets.

  7. Uniform norm - Wikipedia

    en.wikipedia.org/wiki/Uniform_norm

    For example, points (2, 0), (2, 1), and (2, 2) lie along the perimeter of a square and belong to the set of vectors whose sup norm is 2. In mathematical analysis, the uniform norm (or sup norm) assigns, to real-or complex-valued bounded functions ⁠ ⁠ defined on a set ⁠ ⁠, the non-negative number

  8. Riesz's lemma - Wikipedia

    en.wikipedia.org/wiki/Riesz's_lemma

    If is a reflexive Banach space then this conclusion is also true when = [2]. Metric reformulation. As usual, let (,):= ‖ ‖ denote the canonical metric induced by the norm, call the set {: ‖ ‖ =} of all vectors that are a distance of from the origin the unit sphere, and denote the distance from a point to the set by (,) := (,) = ‖ ‖.

  9. Lorentz space - Wikipedia

    en.wikipedia.org/wiki/Lorentz_space

    Like the spaces, they are characterized by a norm (technically a quasinorm) that encodes information about the "size" of a function, just as the norm does. The two basic qualitative notions of "size" of a function are: how tall is the graph of the function, and how spread out is it.