Search results
Results from the WOW.Com Content Network
In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...
denotes the corresponding decision problem. Note that c R is a search problem while #R is a decision problem, however c R can be C Cook-reduced to #R (for appropriate C) using a binary search (the reason #R is defined the way it is, rather than being the graph of c R, is to make this binary search possible).
In computer science, the count-distinct problem [1] (also known in applied mathematics as the cardinality estimation problem) is the problem of finding the number of distinct elements in a data stream with repeated elements. This is a well-known problem with numerous applications.
The Subgraph Isomorphism problem is NP-complete. The graph isomorphism problem is suspected to be neither in P nor NP-complete, though it is in NP. This is an example of a problem that is thought to be hard, but is not thought to be NP-complete. This class is called NP-Intermediate problems and exists if and only if P≠NP.
For problem instances in which the maximum key value is significantly smaller than the number of items, counting sort can be highly space-efficient, as the only storage it uses other than its input and output arrays is the Count array which uses space O(k).
The variant problem can be solved by the reflection method in a similar way to the original problem. The number of possible vote sequences is ( p + q q ) {\displaystyle {\tbinom {p+q}{q}}} . Call a sequence "bad" if the second candidate is ever ahead, and if the number of bad sequences can be enumerated then the number of "good" sequences can ...
The most common problem being solved is the 0-1 knapsack problem, which restricts the number of copies of each kind of item to zero or one. Given a set of n {\displaystyle n} items numbered from 1 up to n {\displaystyle n} , each with a weight w i {\displaystyle w_{i}} and a value v i {\displaystyle v_{i}} , along with a maximum weight capacity ...
Constraint satisfaction problems (CSPs) are mathematical questions defined as a set of objects whose state must satisfy a number of constraints or limitations. CSPs represent the entities in a problem as a homogeneous collection of finite constraints over variables , which is solved by constraint satisfaction methods.