enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Location–scale family - Wikipedia

    en.wikipedia.org/wiki/Location–scale_family

    The following shows how to implement a location–scale family in a statistical package or programming environment where only functions for the "standard" version of a distribution are available. It is designed for R but should generalize to any language and library.

  3. Sample entropy - Wikipedia

    en.wikipedia.org/wiki/Sample_entropy

    Like approximate entropy (ApEn), Sample entropy (SampEn) is a measure of complexity. [1] But it does not include self-similar patterns as ApEn does. For a given embedding dimension, tolerance and number of data points, SampEn is the negative natural logarithm of the probability that if two sets of simultaneous data points of length have distance < then two sets of simultaneous data points of ...

  4. Probabilistic programming - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_programming

    Probabilistic programming (PP) is a programming paradigm based on the declarative specification of probabilistic models, for which inference is performed automatically. [1] Probabilistic programming attempts to unify probabilistic modeling and traditional general purpose programming in order to make the former easier and more widely applicable.

  5. Probabilistic numerics - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_numerics

    The interplay between numerical analysis and probability is touched upon by a number of other areas of mathematics, including average-case analysis of numerical methods, information-based complexity, game theory, and statistical decision theory. Precursors to what is now being called "probabilistic numerics" can be found as early as the late ...

  6. Scale parameter - Wikipedia

    en.wikipedia.org/wiki/Scale_parameter

    Animation showing the effects of a scale parameter on a probability distribution supported on the positive real line. Effect of a scale parameter over a mixture of two normal probability distributions. If the probability density exists for all values of the complete parameter set, then the density (as a function of the scale parameter only ...

  7. Random sample consensus - Wikipedia

    en.wikipedia.org/wiki/Random_sample_consensus

    That probability to the power of k (the number of iterations in running the algorithm) is the probability that the algorithm never selects a set of n points which all are inliers, and this is the same as (the probability that the algorithm does not result in a successful model estimation) in extreme. Consequently,

  8. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    However, knowledge that a particular number will win a lottery has high informational value because it communicates the occurrence of a very low probability event. The information content , also called the surprisal or self-information, of an event E {\displaystyle E} is a function that increases as the probability p ( E ) {\displaystyle p(E ...

  9. Probabilistic analysis of algorithms - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_analysis_of...

    In analysis of algorithms, probabilistic analysis of algorithms is an approach to estimate the computational complexity of an algorithm or a computational problem. It starts from an assumption about a probabilistic distribution of the set of all possible inputs.