Search results
Results from the WOW.Com Content Network
The higher pressure will "win". Hence, the closure of the pulmonary valve (P 2) will be delayed since the pressure in the right ventricle is increased in inspiration, opposing the pressure in the pulmonary artery and keeping it open longer than in expiration. The change in A 2 is not that evident. Thus P 2 appears after A 2 in inspiration ...
Phase II of expiration is when the CO 2 within the lungs is forced up the respiratory tract on its way to leave the body, which causes mixing of the air from the dead space with the air in the functional alveoli responsible for gas exchange. Phase III is the final portion of expiration which reflects CO 2 only from the alveoli and not the dead ...
Lung volumes. Functional residual capacity (FRC) is the volume of air present in the lungs at the end of passive expiration. [1] At FRC, the opposing elastic recoil forces of the lungs and chest wall are in equilibrium and there is no exertion by the diaphragm or other respiratory muscles.
In those with acute respiratory failure on mechanical ventilation, "the static compliance of the total respiratory system is conventionally obtained by dividing the tidal volume by the difference between the 'plateau' pressure measured at the airway opening (PaO) during an occlusion at end-inspiration and positive end-expiratory pressure (PEEP ...
Relaxing the diaphragm during expiration allows the lungs to recoil and regain the intrapleural pressure experienced previously at rest. Elastic recoil is inversely related to lung compliance . This phenomenon occurs because of the elastin in the elastic fibers in the connective tissue of the lungs, and because of the surface tension of the ...
Exhalation (or expiration) is the flow of the breath out of an organism. In animals, it is the movement of air from the lungs out of the airways , to the external environment during breathing . This happens due to elastic properties of the lungs, as well as the internal intercostal muscles which lower the rib cage and decrease thoracic volume.
Airway resistance can also vary between inspiration and expiration: In emphysema there is destruction of the elastic tissue of the lungs which help hold the small airways open. Therefore, during expiration, particularly forced expiration, these airways may collapse causing increased airway resistance.
The normal relaxed state of the lung and chest is partially empty. Further exhalation requires muscular work. Inhalation is an active process requiring work. [4] Some of this work is to overcome frictional resistance to flow, and part is used to deform elastic tissues, and is stored as potential energy, which is recovered during the passive process of exhalation, Tidal breathing is breathing ...