enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integration by reduction formulae - Wikipedia

    en.wikipedia.org/wiki/Integration_by_reduction...

    In integral calculus, integration by reduction formulae is a method relying on recurrence relations. It is used when an expression containing an integer parameter , usually in the form of powers of elementary functions, or products of transcendental functions and polynomials of arbitrary degree , can't be integrated directly.

  3. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.

  4. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.

  5. Method of undetermined coefficients - Wikipedia

    en.wikipedia.org/wiki/Method_of_undetermined...

    If a term in the above particular integral for y appears in the homogeneous solution, it is necessary to multiply by a sufficiently large power of x in order to make the solution independent. If the function of x is a sum of terms in the above table, the particular integral can be guessed using a sum of the corresponding terms for y. [1]

  6. Cauchy formula for repeated integration - Wikipedia

    en.wikipedia.org/wiki/Cauchy_formula_for...

    The Cauchy formula for repeated integration, named after Augustin-Louis Cauchy, allows one to compress n antiderivatives of a function into a single integral (cf. Cauchy's formula). For non-integer n it yields the definition of fractional integrals and (with n < 0) fractional derivatives .

  7. Wallis' integrals - Wikipedia

    en.wikipedia.org/wiki/Wallis'_integrals

    The sequence () is decreasing and has positive terms. In fact, for all : >, because it is an integral of a non-negative continuous function which is not identically zero; + = ⁡ + ⁡ = (⁡) (⁡) >, again because the last integral is of a non-negative continuous function.

  8. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.

  9. Zero stability - Wikipedia

    en.wikipedia.org/wiki/Zero_stability

    The roots of this equation are = and = and so the general solution to the recurrence relation is = + (). Rounding errors in the computation of y 1 {\displaystyle y_{1}} would mean a nonzero (though small) value of c 2 {\displaystyle c_{2}} so that eventually the parasitic solution ( − 5 ) n {\displaystyle (-5)^{n}} would dominate.