Search results
Results from the WOW.Com Content Network
[1] [2] The term normalized vector is sometimes used as a synonym for unit vector. A unit vector is often used to represent directions, such as normal directions. Unit vectors are often chosen to form the basis of a vector space, and every vector in the space may be written as a linear combination form of unit vectors.
For two elements a 1 + b 1 i + c 1 j + d 1 k and a 2 + b 2 i + c 2 j + d 2 k, their product, called the Hamilton product (a 1 + b 1 i + c 1 j + d 1 k) (a 2 + b 2 i + c 2 j + d 2 k), is determined by the products of the basis elements and the distributive law. The distributive law makes it possible to expand the product so that it is a sum of ...
By inserting those vectors and angles into the formula for q above, one finds that if q represents the first rotation, −q represents the second rotation. This is a geometric proof that conjugation by q and by −q must produce the same rotational transformation matrix.
The formula is valid for all index values, and for any n (when n = 0 or n = 1, this is the empty product). However, computing the formula above naively has a time complexity of O(n 2), whereas the sign can be computed from the parity of the permutation from its disjoint cycles in only O(n log(n)) cost.
As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge. The divergence of a tensor field of non-zero order k is written as =, a contraction of a tensor field of order k − 1. Specifically, the divergence of a vector is a scalar.
In mathematics, quaternions are a non-commutative number system that extends the complex numbers.Quaternions and their applications to rotations were first described in print by Olinde Rodrigues in all but name in 1840, [1] but independently discovered by Irish mathematician Sir William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space.
Hamilton defined a quaternion as the quotient of two directed lines in tridimensional space; [1] or, more generally, as the quotient of two vectors. [2] A quaternion can be represented as the sum of a scalar and a vector. It can also be represented as the product of its tensor and its versor.
In zero dimensions there is only the zero vector, while in one dimension all vectors are parallel, so in both these cases the product must be identically zero. The restriction to 0, 1, 3 and 7 dimensions is related to Hurwitz's theorem, that normed division algebras are only possible in 1, 2, 4 and 8 dimensions. The cross product is formed from ...