Search results
Results from the WOW.Com Content Network
Myelinogenesis is the formation and development of myelin sheaths in the nervous system, typically initiated in late prenatal neurodevelopment and continuing throughout postnatal development. [1] Myelinogenesis continues throughout the lifespan to support learning and memory via neural circuit plasticity as well as remyelination following ...
Myelin (/ ˈ m aɪ. ə l ɪ n / MY-ə-lin) is a lipid-rich material that surrounds nerve cell axons to insulate them and increase the rate at which electrical impulses (called action potentials) pass along the axon. [1] [2] The myelinated axon can be likened to an electrical wire (the axon) with insulating material (myelin) around it. However ...
MAG is believed to be involved in myelination during nerve regeneration in the PNS [6] and is vital for the long-term survival of the myelinated axons following myelinogenesis. [7] In the CNS MAG is one of three main myelin-associated inhibitors of axonal regeneration after injury, [ 8 ] making it an important protein for future research on ...
Fig. 1. Neuron and myelinated axon, with signal flow from inputs at dendrites to outputs at axon terminals. The signal is a short electrical pulse called action potential or 'spike'. Fig 2. Time course of neuronal action potential ("spike"). Note that the amplitude and the exact shape of the action potential can vary according to the exact ...
OPCs play a critical role in developmental and adult myelinogenesis. They give rise to oligodendrocytes, which then wrap around axons and provide electrical insulation by forming a myelin sheath. This enables faster action potential propagation and high fidelity transmission without a need for an increase in axonal diameter. [ 2 ]
Oligodendrocytes are a type of glial cell, non-neuronal cells in the central nervous system.They arise during development from oligodendrocyte precursor cells (OPCs), [8] which can be identified by their expression of a number of antigens, including the ganglioside GD3, [9] [10] [11] the NG2 chondroitin sulfate proteoglycan, and the platelet-derived growth factor-alpha receptor subunit (PDGF ...
The decreased axon size reflects a higher packing density of neurofilaments in this region, which are less heavily phosphorylated and are transported more slowly. [6] Vesicles and other organelles are also increased at the nodes, which suggest that there is a bottleneck of axonal transport in both directions as well as local axonal-glial signaling.
Axon guidance (also called axon pathfinding) is a subfield of neural development concerning the process by which neurons send out axons to reach their correct targets. Axons often follow very precise paths in the nervous system, and how they manage to find their way so accurately is an area of ongoing research.