Search results
Results from the WOW.Com Content Network
When afterburning engines are equipped with a C-D nozzle the throat area is variable. Nozzles for supersonic flight speeds, at which high nozzle pressure ratios are generated, [2] also have variable area divergent sections. [3] Turbofan engines may have an additional and separate propelling nozzle which further accelerates the bypass air.
The case of a converging-diverging nozzle allows a supersonic flow to occur, providing the receiver pressure is sufficiently low. This is shown in figure 3 assuming a constant reservoir pressure with a decreasing receiver pressure. If the receiver pressure is equal to the reservoir pressure, no flow occurs, represented by curve A.
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.
Figure 1: A de Laval nozzle, showing approximate flow velocity increasing from green to red in the direction of flow Density flow in a nozzle. A rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate combustion products to high supersonic velocities.
The example shown is pneumatic. At sub-millimeter distances, a small movement of the flapper plate results in a large change in flow. The nozzle is fed from a chamber which is in turn fed by a restriction, so changes of flow result in changes of chamber pressure. The nozzle diameter must be larger than the restriction orifice in order to work. [2]
A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .
Spray nozzles can have one or more outlets; a multiple outlet nozzle is known as a compound nozzle. Multiple outlets on nozzles are present on spray balls, which have been used in the brewing industry for many years for cleaning casks and kegs. [2] Spray nozzles range from those for heavy duty industrial uses to light duty spray cans or spray ...
These nozzles also feature large and unobstructed flow passages, which provide a relatively high resistance to clogging. Hollow cone nozzles provide the smallest drop size distributions. The relative range of drop sizes tends to be narrower than other hydraulic styles. The hollow cone pattern is also achievable by the spiral design of nozzle.