Search results
Results from the WOW.Com Content Network
Alternatively, an undecorated tile with no matching rules may be constructed, but the tile is not connected. The construction can be extended to a three-dimensional, connected tile with no matching rules, but this tile allows tilings that are periodic in one direction, and so it is only weakly aperiodic. Moreover, the tile is not simply connected.
In geometry, a tiling is a partition of the plane (or any other geometric setting) into closed sets (called tiles), without gaps or overlaps (other than the boundaries of the tiles). [1] A tiling is considered periodic if there exist translations in two independent directions which map the tiling onto itself.
The pattern represented by every finite patch of tiles in a Penrose tiling occurs infinitely many times throughout the tiling. They are quasicrystals: implemented as a physical structure a Penrose tiling will produce diffraction patterns with Bragg peaks and five-fold symmetry, revealing the repeated patterns and fixed orientations of its tiles ...
It is not difficult to design a set of tiles that admits non-periodic tilings as well as periodic tilings. (For example, randomly arranged tilings using a 2×2 square and 2×1 rectangle are typically non-periodic.) However, an aperiodic set of tiles can only produce non-periodic tilings.
An aperiodic tiling is a non-periodic tiling with the additional property that it does not contain arbitrarily large periodic regions or patches. A set of tile-types (or prototiles) is aperiodic if copies of these tiles can form only non-periodic tilings. The Penrose tilings are a well-known example of aperiodic tilings. [1] [2]
§5.1 Pattern, motif, §5.2 group theory, symmetry group, subgroup, §5.3 2-D lattice, §5.4 Dirichlet tiling, §5.5 continuous group, §5.6 Islamic geometric patterns 6 Classification of tilings with transitivity properties
A periodic tiling has a repeating pattern. Some special kinds include regular tilings with regular polygonal tiles all of the same shape, and semiregular tilings with regular tiles of more than one shape and with every corner identically arranged. The patterns formed by periodic tilings can be categorized into 17 wallpaper groups. A tiling that ...
[2] Any prototile satisfying Conway's criterion admits a periodic tiling of the plane—and does so using only 180-degree rotations. [1] The Conway criterion is a sufficient condition to prove that a prototile tiles the plane but not a necessary one. There are tiles that fail the criterion and still tile the plane. [3]