Search results
Results from the WOW.Com Content Network
Thrombopoietin is a glycoprotein hormone produced by the liver and kidney which regulates the production of platelets. It stimulates the production and differentiation of megakaryocytes, the bone marrow cells that bud off large numbers of platelets. [5] Megakaryocytopoiesis is the cellular development process that leads to platelet production.
Bone growth in length is stimulated by the production of growth hormone (GH), a secretion of the anterior lobe of the pituitary gland. The long bone category includes the femora, tibiae, and fibulae of the legs; the humeri , radii , and ulnae of the arms; metacarpals and metatarsals of the hands and feet, the phalanges of the fingers and toes ...
The epiphyseal plate, epiphysial plate, physis, or growth plate is a hyaline cartilage plate in the metaphysis at each end of a long bone.It is the part of a long bone where new bone growth takes place; that is, the whole bone is alive, with maintenance remodeling throughout its existing bone tissue, but the growth plate is the place where the long bone grows longer (adds length).
Thrombopoiesis is the formation of thrombocytes (blood platelets) in the bone marrow. Thrombopoietin is the main regulator of thrombopoiesis. Thrombopoietin affects most aspects of the production of platelets.
Bone tissue is removed by osteoclasts, and then new bone tissue is formed by osteoblasts. Both processes utilize cytokine (TGF-β, IGF) signalling.In osteology, bone remodeling or bone metabolism is a lifelong process where mature bone tissue is removed from the skeleton (a process called bone resorption) and new bone tissue is formed (a process called ossification or new bone formation).
A spotted gar larva at 22 days stained for cartilage (blue) and bone (red). Chondrogenesis is the biological process through which cartilage tissue is formed and developed. . This intricate and tightly regulated cellular differentiation pathway plays a crucial role in skeletal development, as cartilage serves as a fundamental component of the embryonic skele
If there is an excess of growth hormone, it is usually because of over-secretion of somatotrope cells in the anterior pituitary gland. A significant amount of excess somatotrope secretion before puberty or before the end of new bone tissue growth can lead to gigantism, a disease that causes excess growth of body (e.g. being over 7 ft. tall) and unusually long limbs.
A bone growth factor is a growth factor that stimulates the growth of bone tissue. [1] [2]Known bone growth factors include insulin-like growth factor-1 (IGF-1), insulin-like growth factor-2 (IGF-2), transforming growth factor beta (TGF-β), fibroblast growth factors (FGFs), platelet-derived growth factor (PDGF), parathyroid hormone-related peptide (PTHrP), bone morphogenetic proteins (BMPs ...