Search results
Results from the WOW.Com Content Network
Plants cool when they transpire. Evaporating water and transmitting it through leaf stomata requires a lot of energy. Fred Pearce states that “a single tree transpiring a hundred litres of water a day has a cooling power equivalent to two household air-conditioning units” [7] (p. 29). An individual tree can transpire hundreds of litres of ...
Rankine cycle with superheat. In a real power-plant cycle (the name "Rankine" cycle is used only for the ideal cycle), the compression by the pump and the expansion in the turbine are not isentropic. In other words, these processes are non-reversible, and entropy is increased during the two processes.
This consists of a refrigeration cycle, where heat is removed from a low-temperature space or source and rejected to a high-temperature sink with the help of external work, and its inverse, the thermodynamic power cycle. In the power cycle, heat is supplied from a high-temperature source to the engine, part of the heat being used to produce ...
The most common refrigeration cycle is the vapor compression cycle, which models systems using refrigerants that change phase. The absorption refrigeration cycle is an alternative that absorbs the refrigerant in a liquid solution rather than evaporating it. Gas refrigeration cycles include the reversed Brayton cycle and the Hampson–Linde cycle.
The power produced is considered comprehensive of the produced power during the expansion process of the working fluid and the one consumed during the compression step. The typical conceptual configuration of a transcritical cycle employs a single heater, [ 14 ] [ 15 ] thanks to the absence of drastic phase change from one state to another ...
T-s diagram for the ideal/real ORC. The working principle of the organic Rankine cycle is the same as that of the Rankine cycle: the working fluid is pumped to a boiler where it is evaporated, passed through an expansion device (turbine, [3] screw, [4] scroll, [5] or other expander), and then through a condenser heat exchanger where it is finally re-condensed.
In refrigeration systems, subcooling the refrigerant is necessary to ensure the completion of the remaining stages of the refrigeration cycle. The subcooling stage provides certainty that the refrigerant is fully liquid before it reaches the next step on the cycle, the thermal expansion valve , where the presence of gas can be disruptive. [ 1 ]
If water is cooled at a rate on the order of 10 6 K/s, the crystal nucleation can be avoided and water becomes a glass—that is, an amorphous (non-crystalline) solid. Its glass transition temperature is much colder and harder to determine, but studies estimate it at about 136 K (−137 °C; −215 °F). [ 9 ]