Search results
Results from the WOW.Com Content Network
Queueing theory is the mathematical study of waiting lines, or queues. [1] A queueing model is constructed so that queue lengths and waiting time can be predicted. [1] Queueing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide a ...
Service times have an exponential distribution with rate parameter μ in the M/M/1 queue, where 1/μ is the mean service time. All arrival times and services times are (usually) assumed to be independent of one another. [2] A single server serves customers one at a time from the front of the queue, according to a first-come, first-served ...
where τ is the mean service time; σ 2 is the variance of service time; and ρ=λτ < 1, λ being the arrival rate of the customers. For M/M/1 queue, the service times are exponentially distributed, then σ 2 = τ 2 and the mean waiting time in the queue denoted by W M is given by the following equation: [5]
Kingman's formula gives an approximation for the mean waiting time in a G/G/1 queue. [6] Lindley's integral equation is a relationship satisfied by the stationary waiting time distribution which can be solved using the Wiener–Hopf method. [7]
In queueing theory, a discipline within the mathematical theory of probability, the M/M/c queue (or Erlang–C model [1]: 495 ) is a multi-server queueing model. [2] In Kendall's notation it describes a system where arrivals form a single queue and are governed by a Poisson process, there are c servers, and job service times are exponentially distributed. [3]
An M/M/1 queueing node. A M/M/1 queue means that the time between arrivals is Markovian (M), i.e. the inter-arrival time follows an exponential distribution of parameter λ. The second M means that the service time is Markovian: it follows an exponential distribution of parameter μ. The last parameter is the number of service channel which one ...
The mean sojourn time (or sometimes mean waiting time) for an object in a dynamical system is the amount of time an object is expected to spend in a system before leaving the system permanently. This concept is widely used in various fields, including physics, chemistry, and stochastic processes, to study the behavior of systems over time.
The model name is written in Kendall's notation, and is an extension of the M/M/c queue, where service times must be exponentially distributed and of the M/G/1 queue with a single server. Most performance metrics for this queueing system are not known and remain an open problem .