Ad
related to: linear momentum equation explained
Search results
Results from the WOW.Com Content Network
In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction.
The Navier–Stokes momentum equation can be derived as a particular form of the Cauchy momentum equation, whose general convective form is: = +. By setting the Cauchy stress tensor σ {\textstyle {\boldsymbol {\sigma }}} to be the sum of a viscosity term τ {\textstyle {\boldsymbol {\tau }}} (the deviatoric stress ) and a pressure term − p I ...
A general momentum equation is obtained when the conservation relation is applied to momentum. When the intensive property φ is considered as the mass flux (also momentum density), that is, the product of mass density and flow velocity ρu, by substitution into the general continuity equation:
Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
The Euler momentum equation is an expression of Newton's second law adapted to fluid dynamics. [60] [61] A fluid is described by a velocity field, i.e., a function (,) that assigns a velocity vector to each point in space and time. A small object being carried along by the fluid flow can change velocity for two reasons: first, because the ...
In the general case a conservation equation can be also a system of this kind of equations (a vector equation) in the form: [10]: 43 + = where y is called the conserved (vector) quantity, ∇y is its gradient, 0 is the zero vector, and A(y) is called the Jacobian of the current density.
The fundamental equation describing the behavior of a rotating solid body is Euler's equation of motion: = = + = + = + where the pseudovectors τ and L are, respectively, the torques on the body and its angular momentum, the scalar I is its moment of inertia, the vector ω is its angular velocity, the vector α is its angular acceleration, D is ...
Ad
related to: linear momentum equation explained