Search results
Results from the WOW.Com Content Network
Empirical Bayes methods can be seen as an approximation to a fully Bayesian treatment of a hierarchical Bayes model.. In, for example, a two-stage hierarchical Bayes model, observed data = {,, …,} are assumed to be generated from an unobserved set of parameters = {,, …,} according to a probability distribution ().
Shrinkage is implicit in Bayesian inference and penalized likelihood inference, and explicit in James–Stein-type inference. In contrast, simple types of maximum-likelihood and least-squares estimation procedures do not include shrinkage effects, although they can be used within shrinkage estimation schemes.
The James–Stein estimator may seem at first sight to be a result of some peculiarity of the problem setting. In fact, the estimator exemplifies a very wide-ranging effect; namely, the fact that the "ordinary" or least squares estimator is often inadmissible for simultaneous estimation of several parameters.
All of these approaches rely on the concept of shrinkage. This is implicit in Bayesian methods and in penalized maximum likelihood methods and explicit in the Stein-type shrinkage approach. A simple version of a shrinkage estimator of the covariance matrix is represented by the Ledoit-Wolf shrinkage estimator.
Best linear unbiased predictions are similar to empirical Bayes estimates of random effects in linear mixed models, except that in the latter case, where weights depend on unknown values of components of variance, these unknown variances are replaced by sample-based estimates.
Additive smoothing is a type of shrinkage estimator, as the resulting estimate will be between the empirical probability (relative frequency) / and the uniform probability /. Invoking Laplace's rule of succession , some authors have argued [ citation needed ] that α should be 1 (in which case the term add-one smoothing [ 2 ] [ 3 ] is also used ...
A Bayes estimator derived through the empirical Bayes method is called an empirical Bayes estimator. Empirical Bayes methods enable the use of auxiliary empirical data, from observations of related parameters, in the development of a Bayes estimator. This is done under the assumption that the estimated parameters are obtained from a common prior.
Stein's lemma, named in honor of Charles Stein, is a theorem of probability theory that is of interest primarily because of its applications to statistical inference — in particular, to James–Stein estimation and empirical Bayes methods — and its applications to portfolio choice theory. [1]